Manhattan Beach Unified School District

2015 Long Range Facilities Master Plan

07/09/2015

DLR Group
Superintendent’s Statement

The school facility is much more than a passive container of the educational process; it is, rather, an integral component of the conditions of learning.

--Lawrence O. Picus

Thank you for taking the time to review the Manhattan Beach Unified School District (MBUSD) Facilities Master Plan. We are very proud of the work we have just completed with our Measure BB bond funds, which allowed us to transform Mira Costa High School by providing state-of-the-art classrooms and performance facilities, as well as a beautiful outdoor amphitheater and student quad. The work is nothing short of spectacular. Our Board is dedicated to seeing that same level of quality throughout the District in all of our schools and, therefore, called for the development of a new Facilities Master Plan. This MBUSD Facilities Master Plan establishes a clear guide for the modernization and new construction that we need to embrace over the next ten years to provide all of our students with educational facilities that are commensurate with the outstanding educational experiences that our District provides.

We are preparing MBUSD students to meet the challenges of a rapidly-changing, highly-complex, technology-rich global society. Our students deserve facilities that will maximize their ability to learn, to collaborate, to create, to communicate and to think critically. This Facilities Master Plan will allow us to achieve these goals at each site in the District, and in doing so, best prepare our students for the educational and career opportunities waiting for them upon graduation.

I am proud of so many aspects of this plan:

• It provides flexible learning spaces in all of our schools.
• It embraces the whole child and the role that academics, arts, athletics and aesthetics play in each child’s life.
• It enhances student and employee safety at each site.
• It includes the voices of each of our school’s neighbors and pays attention to neighborhoods.
• It has identified what makes each school special and builds on the character that exists in each school.

I hope you will agree that this Facilities Master Plan will be an exemplary guide as we pursue school facilities that support the highest levels of teaching and learning for decades to come. Manhattan Beach is one of the finest school districts in the nation. Our teachers strive for continuous improvement so we can continue to be a model of high quality teaching and learning. Our facilities should match the excellence of our students and teachers, and reflect the incredible commitment to and support for educational excellence that is demonstrated by the entire Manhattan Beach Unified School District community. Please join me in supporting the vision articulated in the Facilities Master Plan, which will provide our students with the facilities and learning environments they so richly deserve.

Michael D. Matthews, Ed.D.
Superintendent of Schools
Contents

RESEARCH & DISCOVERY
- Introduction .. 8
- About Manhattan Beach Unified School District 12
- District Growth and Enrollment 14
- Research & Information Gathered 16
- Vision and Goals .. 30
- Process Overview .. 32
- The Core Planning Group ... 34
- Establishing Guiding Principles for Design 35

FACILITIES ASSESSMENTS
- Introduction .. 40
- Process Overview .. 41
- Educational Adequacy Assessments 42
- Sustainability ... 44
- Physical Condition Assessment Grading Criteria and Results 55

COMMUNITY OUTREACH
- Introduction .. 60
- Process Overview .. 62
- The Community Forums ... 68
- The Online Surveys .. 74

EDUCATIONAL SPECIFICATIONS
- Educational Specifications .. 86
 - Introduction: ... 86
 - Spatial Requirements & Relationships: 100
 - Elementary and Preschool Spatial Program 102
 - Middle School Spatial Program 176
 - High School Spatial Program 226

MASTER PLANNING
- Manhattan Beach Preschool 307
- Grand View Elementary School 317
- Meadows Elementary School 327
- Pacific Elementary School 337
- Pennekamp Elementary School 347
- Robinson Elementary School 357
- Manhattan Beach Middle School 367
- Mira Costa High School ... 377
- Education Center (District Office) 387
- Maintenance & Operations .. 391

FINALIZATION & IMPLEMENTATION
- Introduction & Process ... 402
- The Project Lists .. 404
- What Does It Cost? ... 406
- Total Project Costs for School and District Facilities 408
- Master Plan Funding Opportunities 412
- Local General Obligation Bond 413
- Summary of the Implementation Strategy 428
CHAPTER 1

RESEARCH & DISCOVERY
Introduction

The development of a Facilities Master Plan is an integral task to assist the Manhattan Beach Unified School District with maintaining their existing campuses and planning required facilities to best support a successful educational program. DLR Group was enlisted to assist the District with looking ahead ten years to develop a Facilities Master Plan that would define facility needs at each of the District’s campuses and support facilities. The Manhattan Beach Unified School District’s Board of Trustees has initiated a vision for how students learn and has tasked the Superintendent and District staff with envisioning the types of spaces necessary to support 21st-Century student learning.

The specific purpose and goals of the Manhattan Beach Unified School District’s Facilities Master Plan are as follows:

• Assess the physical conditions of all sites and determine the “needs” for repair and replacement, prioritized based on the critical nature of the improvements.
• Determine the cost of improvements for each site.
• Assess educational adequacy and functionality of school sites and identify the special requirements for future upgrades and additions.
• Identify priority projects for each site based on the educational needs of the campus.
• Determine the costs associated with the development of each campus master plan.
• Prioritize all identified projects, both repair “needs” and educational “wants” based on criteria developed and set forth within the context of the process.
• Enlist community engagement and involvement in the project.
• Develop Educational Specifications for Preschool, Elementary School, Middle School and High School levels.
• Provide a Facilities Master Plan that will be a living document, easily updated and revised, as well as easily interpreted for future project development.

This Facilities Master Plan is conceived as a ‘map’ to the educational goals of the Manhattan Beach Unified School District. It is understood that this is a living document that will require updates and re-interpretations as the District’s needs change and become more refined. The campus transformations envisioned by this document to support “next generation” learning are forward-thinking, well-conceived and will benefit our students for generations to come.
Acknowledgements to the Participants

The success of any project is dependent on the individuals participating and their commitment and support. In the development of a Facilities Master Plan, it was particularly important to have not only widespread involvement from the Manhattan Beach Unified School District community, but leadership from key members of the District. DLR Group thanks the District’s Board of Trustees, administrative staff, teachers, site administrators, parents, and students who participated by giving many hours to the process because of their devotion and dedication to Manhattan Beach Unified School District. Those who participated are too numerous to list, but we would like to thank and acknowledge those noted below who made particularly outstanding contributions.

Manhattan Beach Unified School District Board of Trustees

- Bill Fournell, President
- Ellen Rosenberg, Vice President
- Jennifer Cochran, Clerk
- Christine Cronin-Hurst, Member
- Karen Komatinsky, Member

Manhattan Beach Unified School District Administration and Staff Team

- Dr. Michael Matthews, Superintendent
- Dr. Dawnyalyn Murakawa-Leopard, Assistant Superintendent
- Dr. Brett Geithman, Executive Director, Educational Services
- Carolyn Seaton, Executive Director, Human Resources
- Phil Cott, Interim Director of Student Services
- Susie Curtis, Interim Director of Special Education
- Eric Sangalang, Director of Information Technology
- Lena Agee, Director of Food Services
- Paul Ruta, Director of Maintenance and Operations
- Bruce Jarvis, Building Trades Specialist
- Ed Jozefecick, Building Trades Specialist
- Rodney Jorgensen, Building Trades Specialist
- MBUSD Elementary and Secondary Administrators
- MBUSD Maintenance and Operations Department

Manhattan Beach Unified School District School Sites

All Principals, Vice Principals, teachers, site classified staff and custodial staff from all school sites who took time to attend community forums and show us around their school sites. Their passion for their sites and District, as well as their vast knowledge, were invaluable in the process.

Manhattan Beach Unified School District Community Members and Organizations

- The Manhattan Beach Education Foundation
- MBX Foundation and all school music, athletic and other booster groups
- All PTAs and Mira Costa High School PTSA
- All parents, students and community members who participated in our community forums and Board workshops

Core Planning Group

- Ellen Rosenberg, Board Vice President
- Karen Komatinsky, Board Member
- Dr. Michael Matthews, Superintendent
- Lena Agee, Director of Food Services
- Bill Ahrens, Teacher, Pennekamp
- Jim Beaumont, Teacher, Mira Costa
- Rhonda Becker, Teacher, Pacific
- Penny Bordokas, community member and former Board Member
- Dr. Toni Brown, Principal, Pennekamp
- Dr. Ben Dale, Principal, Mira Costa High School
- Debbie Drelling, Teacher, Robinson
- Cathey Graves, PTA Council President
- Eyrinne Hart, Teacher, Pennekamp
- Denise Haslop, Teacher, Manhattan Beach Middle School
- Amy Howorth, City Council Member and former Board Member
- John Jackson, Principal, Manhattan Beach Middle School
- Kim Johnson, Director of Children’s Services
- Ed Jozefecick, Building Trades Specialist
- Mark Leyman, Parks and Recreation Director, City of Manhattan Beach
- Dr. Dawnyalyn Murakawa-Leopard, Assistant Superintendent
- Tony Olmos, Public Works Director, City of Manhattan Beach
- Ryan Patel, Manhattan Beach Middle School, Student Board Member
- Christine Rawson, Parent, Manhattan Beach Middle School
- Rebecca Rawson, Student, Manhattan Beach Middle School
- Paul Ruta, Director of Maintenance and Operations
- Eric Sangalang, Director of Information Services
- Ida VanderPoorte, community member and former Board Member
- Ann Marie Whitney, Manhattan Beach Middle School PTA President
About Manhattan Beach Unified School District

History of the District

In the 19th century, Manhattan Beach was largely uninhabited and consisted mainly of wild verbena and scrub-bush covered hills with a large, distinctive sand dune running the length of the area from the beach to the hills at the east. The development of the Santa Fe Railroad in 1888 and the construction of an electric transit line from Marina Del Rey to Redondo in 1903 ushered in development to the region and the origins of what is today, Manhattan Beach.

The city’s Articles of Incorporation were approved by voters on November 12, 1912. Within a year, Manhattan Beach opened its first educational facility, Center School (now Pacific Elementary School), at the corner of Center Street (Manhattan Beach Boulevard) and Pacific Avenue with 43 students. The first Parent Teachers Association was eventually established in 1932.

The post-war population boom saw tremendous growth throughout the Los Angeles region. At that time Manhattan Beach was an elementary school district and Mira Costa High School was part of the South Bay Union High School District. On three separate occasions, beginning in 1964, initiatives to unify the Manhattan Beach elementary schools with area high schools were placed before the community for vote. Finally in November of 1992, Proposition V was approved by the voters; and a split unification of the South Bay Union High School District was enacted, creating both Redondo Beach Unified School District and Manhattan Beach Unified School District. Manhattan Beach is consistently ranked as one of the best suburbs in Los Angeles County, and the Manhattan Beach Unified School District is also consistently ranked as one of the top five districts in the State of California.

By the 1990’s, the newly minted Manhattan Beach Unified School District realized the need to relieve overcrowding within the District as well as modernize their existing schools, most of which were already nearing the half-century mark. The voters of Manhattan Beach approved Measure A in 1996, by two-thirds required margin, for $47.3 million for these much-needed improvements. The construction of a new middle school at Polliwog Park moved the 6th grade from the elementary schools, relieving the five elementary schools of much of their overcrowding. Each elementary schools was systematically modernized in its entirety by temporarily utilizing the old Manhattan Beach Intermediate School as interim housing while construction was underway. Upon completion of these modernizations, the Intermediate School became the new home of the Manhattan Beach Preschool program. The City of Manhattan Beach approved Measure M in 2000 in the amount of $26 million. The funds were slated for much-needed upgrades to Mira Costa High School, including fire and life safety standards, repair and rehabilitation of existing educational spaces and the construction of additional space to relieve overcrowding at the high school.

In 2008, the residents of Manhattan Beach approved Measure BB for $67.5 million with 62% of the votes. The proceeds from this bond were slated for renovations, repairs and new teaching spaces at the then 58-year old Mira Costa High School. The final elements of these improvements have just been completed earlier this year.

In the 19th century, Manhattan Beach was largely uninhabited and consisted mainly of wild verbena and scrub-bush covered hills with a large, distinctive sand dune running the length of the area from the beach to the hills at the east. The development of the Santa Fe Railroad in 1888 and the construction of an electric transit line from Marina Del Rey to Redondo in 1903 ushered in development to the region and the origins of what is today, Manhattan Beach.

The city’s Articles of Incorporation were approved by voters on November 12, 1912. Within a year, Manhattan Beach opened its first educational facility, Center School (now Pacific Elementary School), at the corner of Center Street (Manhattan Beach Boulevard) and Pacific Avenue with 43 students. The first Parent Teachers Association was eventually established in 1932.

The post-war population boom saw tremendous growth throughout the Los Angeles region. At that time Manhattan Beach was an elementary school district and Mira Costa High School was part of the South Bay Union High School District. On three separate occasions, beginning in 1964, initiatives to unify the Manhattan Beach elementary schools with area high schools were placed before the community for vote. Finally in November of 1992, Proposition V was approved by the voters; and a split unification of the South Bay Union High School District was enacted, creating both Redondo Beach Unified School District and Manhattan Beach Unified School District. Manhattan Beach is consistently ranked as one of the best suburbs in Los Angeles County, and the Manhattan Beach Unified School District is also consistently ranked as one of the top five districts in the State of California.

By the 1990’s, the newly minted Manhattan Beach Unified School District realized the need to relieve overcrowding within the District as well as modernize their existing schools, most of which were already nearing the half-century mark. The voters of Manhattan Beach approved Measure A in 1996, by two-thirds required margin, for $47.3 million for these much-needed improvements. The construction of a new middle school at Polliwog Park moved the 6th grade from the elementary schools, relieving the five elementary schools of much of their overcrowding. Each elementary schools was systematically modernized in its entirety by temporarily utilizing the old Manhattan Beach Intermediate School as interim housing while construction was underway. Upon completion of these modernizations, the Intermediate School became the new home of the Manhattan Beach Preschool program. The City of Manhattan Beach approved Measure M in 2000 in the amount of $26 million. The funds were slated for much-needed upgrades to Mira Costa High School, including fire and life safety standards, repair and rehabilitation of existing educational spaces and the construction of additional space to relieve overcrowding at the high school.

In 2008, the residents of Manhattan Beach approved Measure BB for $67.5 million with 62% of the votes. The proceeds from this bond were slated for renovations, repairs and new teaching spaces at the then 58-year old Mira Costa High School. The final elements of these improvements have just been completed earlier this year.
Manhattan Beach Unified School District Growth and Enrollment

Manhattan Beach Unified School District ("School District") serves students in preschool, transitional kindergarten, and kindergarten through 12th grades residing in the City of Manhattan Beach. The School District consists of one (1) preschool; five (5) elementary schools serving grades kindergarten through 5; one (1) middle school serving grades 6 through 8; and one (1) high school serving grades 9 through 12. Since 2001/2002 school year, the enrollment database of the School District has increased by 544 students, with average annual increase of 41 students per year over that period.

In order to determine the estimated growth or decline of the student population during the next 10 years ("Study Period"), the School District has prepared an Enrollment Analysis. As of school year 2014/2015, the enrollment of the School District is 6,883 students. Based on information contained in the Study, the enrollment of the School District is expected to decrease at the elementary school and middle school level, but increase at the high school level through the end of the Study Period.

Currently and over the next few years, the School District is projected to experience its peak student enrollment. By school year 2020/2021, student enrollment is projected to begin its decline. However, even at its lowest point at the end of the Study Period, projected enrollment will continue exceed student enrollment from school year 2003/2004.

As is the case with any long-term projection of student enrollment, the School District should keep in mind the Enrollment Projection Study is a living document based on information gathered during the first quarter of 2015. Due to fluctuations in population, changes in residential development, unforeseen economic conditions, and alterations in School District enrollment policy, adjustments to this Study will be necessary as fluctuations in population, economy, and housing market take place over the Study Period.
Enrollment Summaries of Local School Districts

Below lists out the largest school districts within the County of Los Angeles based on enrollment for school year 2013/2014 along with MBUSD’s rank based on information provided by CBEDS.

<table>
<thead>
<tr>
<th>Rank</th>
<th>School District</th>
<th>Total Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Los Angeles Unified</td>
<td>646,683</td>
</tr>
<tr>
<td>2.</td>
<td>Long Beach Unified</td>
<td>79,709</td>
</tr>
<tr>
<td>3.</td>
<td>Monterey Unified</td>
<td>29,062</td>
</tr>
<tr>
<td>4.</td>
<td>William S. Hart Union High</td>
<td>26,983</td>
</tr>
<tr>
<td>5.</td>
<td>Glendale Unified</td>
<td>26,168</td>
</tr>
<tr>
<td>6.</td>
<td>Pomona Unified</td>
<td>25,311</td>
</tr>
<tr>
<td>7.</td>
<td>Antelope Valley Union High</td>
<td>24,619</td>
</tr>
<tr>
<td>8.</td>
<td>Torrance Unified</td>
<td>23,947</td>
</tr>
<tr>
<td>9.</td>
<td>Downey Unified</td>
<td>22,698</td>
</tr>
<tr>
<td>10.</td>
<td>Compton Unified</td>
<td>22,106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Palos Verdes Peninsula Unified</td>
<td>11,632</td>
</tr>
<tr>
<td>36.</td>
<td>Redondo Beach Unified</td>
<td>9,364</td>
</tr>
<tr>
<td>49.</td>
<td>Manhattan Beach Unified</td>
<td>6,890</td>
</tr>
<tr>
<td>68.</td>
<td>El Segundo Unified</td>
<td>3,477</td>
</tr>
<tr>
<td>78.</td>
<td>Hermosa Beach City Elementary</td>
<td>1,479</td>
</tr>
</tbody>
</table>

Overview of Historical Enrollment for Manhattan Beach Unified School District

<table>
<thead>
<tr>
<th>School Year</th>
<th>District-Wide Enrollment</th>
<th>Growth (Decline)</th>
<th>Growth (Decline) Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001/2002</td>
<td>6,349</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2002/2003</td>
<td>6,465</td>
<td>116</td>
<td>1.83%</td>
</tr>
<tr>
<td>2003/2004</td>
<td>6,441</td>
<td>(24)</td>
<td>(0.37%)</td>
</tr>
<tr>
<td>2004/2005</td>
<td>6,380</td>
<td>(61)</td>
<td>(0.95%)</td>
</tr>
<tr>
<td>2005/2006</td>
<td>6,241</td>
<td>(139)</td>
<td>(2.18%)</td>
</tr>
<tr>
<td>2006/2007</td>
<td>6,168</td>
<td>(73)</td>
<td>(1.17%)</td>
</tr>
<tr>
<td>2007/2008</td>
<td>6,332</td>
<td>164</td>
<td>2.66%</td>
</tr>
<tr>
<td>2008/2009</td>
<td>6,481</td>
<td>149</td>
<td>2.35%</td>
</tr>
<tr>
<td>2009/2010</td>
<td>6,612</td>
<td>131</td>
<td>2.02%</td>
</tr>
<tr>
<td>2010/2011</td>
<td>6,645</td>
<td>33</td>
<td>0.50%</td>
</tr>
<tr>
<td>2011/2012</td>
<td>6,716</td>
<td>71</td>
<td>1.07%</td>
</tr>
<tr>
<td>2012/2013</td>
<td>6,832</td>
<td>116</td>
<td>1.73%</td>
</tr>
<tr>
<td>2013/2014</td>
<td>6,894</td>
<td>62</td>
<td>0.91%</td>
</tr>
<tr>
<td>2014/2015</td>
<td>6,883</td>
<td>(11)</td>
<td>(0.16%)</td>
</tr>
</tbody>
</table>

To analyze the total district-wide enrollment, DOLINKA Group utilized data from the California Basic Educational Data System ("CBEDS") for school year 2001/2002 through school year 2013/2014, and the enrollment database of the School District for school year 2014/2015. The table above shows the enrollment for the school year 2014/2015 which is based on a student database provided by the School District in December 2014. Please note that this is the starting point of the enrollment projections and all inputs will be applied to this enrollment data. In addition, transitional kindergarten was provided separately from the student database and enrollment for Mira Costa High School includes enrollment from the Los Angeles County of Education classrooms.

Annual Change in Student Enrollment

<table>
<thead>
<tr>
<th>School Site</th>
<th>Grade Level</th>
<th>TK [1]</th>
<th>KN [2]</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennekamp ES</td>
<td></td>
<td>21</td>
<td>85</td>
<td>91</td>
<td>90</td>
<td>96</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand View ES</td>
<td></td>
<td>21</td>
<td>94</td>
<td>121</td>
<td>120</td>
<td>120</td>
<td>140</td>
<td>114</td>
<td></td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadows ES</td>
<td></td>
<td>60</td>
<td>70</td>
<td>70</td>
<td>72</td>
<td>90</td>
<td>85</td>
<td></td>
<td></td>
<td>447</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinson ES</td>
<td></td>
<td>48</td>
<td>70</td>
<td>72</td>
<td>86</td>
<td>76</td>
<td>63</td>
<td></td>
<td></td>
<td>415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific ES</td>
<td></td>
<td>90</td>
<td>106</td>
<td>119</td>
<td>119</td>
<td>96</td>
<td>127</td>
<td></td>
<td></td>
<td>657</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhattan Beach MS</td>
<td></td>
<td>506</td>
<td>563</td>
<td>456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Based on information provided by CBEDS and the School District.
[2] Based on the student database provided by the School District minus transitional kindergarten.
[3] Please note that totals include enrollment from Los Angeles County of Education classrooms.
Historical District Enrollment by School Level

The graph above visually summarizes the fluctuations in enrollment since school year 2001/2002. A large increase in enrollment at the elementary school level in school year 2008/2009 was followed by a higher enrollment at the middle school level a couple years after, which continued on to the higher enrollment at the high school level today.

Historical Incoming Interdistrict Transfers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Grade 1</td>
<td>21</td>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Grade 2</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Grade 3</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Grade 4</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Grade 5</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Grade 6</td>
<td>18</td>
<td>25</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Grade 7</td>
<td>30</td>
<td>19</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>Grade 8</td>
<td>29</td>
<td>31</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Grade 9</td>
<td>148</td>
<td>132</td>
<td>118</td>
<td>106</td>
</tr>
<tr>
<td>Grade 10</td>
<td>150</td>
<td>132</td>
<td>122</td>
<td>125</td>
</tr>
<tr>
<td>Grade 11</td>
<td>123</td>
<td>143</td>
<td>129</td>
<td>129</td>
</tr>
<tr>
<td>Grade 12</td>
<td>256</td>
<td>123</td>
<td>143</td>
<td>130</td>
</tr>
<tr>
<td>Subtotal</td>
<td>841</td>
<td>697</td>
<td>667</td>
<td>671</td>
</tr>
<tr>
<td>Total Enrollment</td>
<td>6,598</td>
<td>6,729</td>
<td>6,902</td>
<td>6,883</td>
</tr>
</tbody>
</table>

Interdistrict Transfer Percentage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hermosa Beach Students in Grades 9-12</td>
<td>256</td>
<td>389</td>
<td>450</td>
<td>466</td>
</tr>
<tr>
<td>Total Students not living in the District</td>
<td>1,097</td>
<td>1,086</td>
<td>1,117</td>
<td>1,137</td>
</tr>
</tbody>
</table>

[1] Does not include students from the Manhattan Beach Preschool and Non-Public School Students.

Historically, the School District has seen a decline in the percentage of interdistrict transfers as enrollment increases. The School District has the ability to control the amount of permits issued for interdistrict transfer students each year. Interdistrict transfers are students who reside outside the School District’s boundaries and have received a permit from their school district home to attend a school within the Manhattan Beach Unified School District.

The graph above shows the total number of interdistrict transfers by grade level since school year 2011/2012.
Incoming Interdistrict Transfers for School Year 2014/2015

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Pennekamp ES</th>
<th>Grand View ES</th>
<th>Meadows ES</th>
<th>Robinson ES</th>
<th>Pacific ES</th>
<th>Manhattan Beach MS</th>
<th>Mira Costa HS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Grade 1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Grade 2</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Grade 3</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Grade 4</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Grade 5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Grade 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Grade 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Grade 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Grade 9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>106</td>
<td>0</td>
<td>106</td>
</tr>
<tr>
<td>Grade 10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Grade 11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>129</td>
<td>0</td>
<td>129</td>
</tr>
<tr>
<td>Grade 12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>130</td>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td>Subtotal</td>
<td>26</td>
<td>28</td>
<td>21</td>
<td>14</td>
<td>17</td>
<td>62</td>
<td>0</td>
<td>653</td>
</tr>
<tr>
<td>Total</td>
<td>570</td>
<td>730</td>
<td>447</td>
<td>415</td>
<td>657</td>
<td>2,539</td>
<td>6,883</td>
<td></td>
</tr>
</tbody>
</table>

Elementary Intradistrict Transfers for School Year 2014/2015

<table>
<thead>
<tr>
<th>School of Residence</th>
<th>Pennekamp Elementary</th>
<th>Grand View Elementary</th>
<th>Meadows Elementary</th>
<th>Robinson Elementary</th>
<th>Pacific Elementary</th>
<th>Interdistrict Transfer</th>
<th>Total Enrollment for 2014/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennekamp Elementary</td>
<td>490</td>
<td>7</td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>107</td>
<td>570</td>
</tr>
<tr>
<td>Grand View Elementary</td>
<td>5</td>
<td>651</td>
<td>2</td>
<td>5</td>
<td>27</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>Meadows Elementary</td>
<td>26</td>
<td>4</td>
<td>390</td>
<td>7</td>
<td>36</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>Robinson Elementary</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>361</td>
<td>29</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Pacific Elementary</td>
<td>17</td>
<td>32</td>
<td>8</td>
<td>530</td>
<td>14</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Interdistrict Transfer</td>
<td>27</td>
<td>28</td>
<td>21</td>
<td>14</td>
<td>17</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Total Enrollment for 2014/2015</td>
<td>570</td>
<td>730</td>
<td>447</td>
<td>415</td>
<td>657</td>
<td>2,819</td>
<td></td>
</tr>
</tbody>
</table>

In accordance with Education Code, each year the School District admits a number of incoming students that reside outside of the District. Incoming students that attend the School District but reside in another school district are referred to as interdistrict transfers (“IDTs”) or as permit students. Typically IDTs are approved based on an agreement with the school district of origin or based on parental employment within the School District. In addition, students who reside within the Hermosa Beach City School District have the option to attend Mira Costa High School without needing a formal interdistrict permit.

The table above illustrates the number of inter-district transfers by school and grade level. Please note that the inter-district transfers for Mira Costa High School does not include the (121) 9th grade students, (126) 10th grade students, (110) 11th grade students, and (109) 12th grade students that reside within the City of Hermosa Beach.

[1] Does not include students from the Manhattan Beach Preschool and Non-Public School Students.
[2] Does not include the (121) 9th grade students, (126) 10th grade students, (110) 11th grade students, and (109) 12th grade students that reside within the City of Hermosa Beach.
Inputs and Methodology

Enrollment Projection Inputs

This section identifies the components used by Dolinka Group to project student enrollment by grade level and location for the School District. Dolinka Group identified and analyzed various connections or linkages between (i) the existing housing stock and (ii) future student enrollment. The primary linkages identified by Dolinka Group include:

Existing Enrollment
• 2014/2015 student enrollment as provided by the School District.

Cohort Survival Factors
• The likelihood of a student progressing from one grade level to the next.

Birth Rates
• Historic and projected number of births within the School District, Los Angeles County, and historical averages are used to project incoming kindergarten enrollment from existing residential units.

Residential Development
• These enrollment projections are based on a student’s school of attendance regardless of where that student may actually reside. Due to the state of the current housing market and limited residential development that has occurred within the School District recently, no residential development is under considerations. In addition, please note that based on information from the School Fee Justification Studies ("Fee Studies") dated February 19, 2015, the School District should expect additional students from residential units as identified in the Fee Studies. The Fee Studies identify approximately 50-70 teardowns and rebuilds each year. Due to the uncertainty of timing, Dolinka Group cannot accurately predict when students from future units will enroll within the School District.

Cohort Survival Factors

<table>
<thead>
<tr>
<th>School</th>
<th>1st to 2nd</th>
<th>2nd to 3rd</th>
<th>3rd to 4th</th>
<th>4th to 5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennekamp Elementary</td>
<td>0.8978</td>
<td>0.9826</td>
<td>1.0251</td>
<td>0.9943</td>
</tr>
<tr>
<td>Grand View Elementary</td>
<td>0.9662</td>
<td>1.0025</td>
<td>1.0348</td>
<td>1.0014</td>
</tr>
<tr>
<td>Meadows Elementary</td>
<td>1.0142</td>
<td>0.9930</td>
<td>1.0380</td>
<td>1.0181</td>
</tr>
<tr>
<td>Robinson Elementary</td>
<td>1.0146</td>
<td>1.0361</td>
<td>1.0176</td>
<td>1.0228</td>
</tr>
<tr>
<td>Pacific Elementary</td>
<td>1.0283</td>
<td>1.0353</td>
<td>1.0255</td>
<td>1.0231</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School</th>
<th>5th to 6th</th>
<th>6th to 7th</th>
<th>7th to 8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan Beach MS</td>
<td>1.0028</td>
<td>1.0062</td>
<td>0.9860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School</th>
<th>8th to 9th</th>
<th>9th to 10th</th>
<th>10th to 11th</th>
<th>11th to 12th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mira Costa HS</td>
<td>1.4093</td>
<td>0.9913</td>
<td>0.9825</td>
<td>1.0022</td>
</tr>
</tbody>
</table>

[1] Please note that Pennekamp Elementary and Grand View Elementary cohorts for kindergarten to 1st grade include transitional kindergarten, thus indicating a cohort of less than 1.00 for kindergarten to 1st grade.

Cohort survival factors represent the number of students that progress from one grade to the next (e.g., the number of first graders who become second graders, etc.). In order to compute cohort survival factors, Dolinka Group analyzed the reported CBEDS enrollment of the School District for school years 2011/2012 through 2014/2015. A cohort survival factor greater than 1.00 indicates that student enrollment is increasing from one grade to the next. Conversely, a cohort survival factor less than 1.00 indicates that the student enrollment is decreasing from one grade to the next. Dolinka Group calculated the grade-to-grade progression of students over the past four (4) school years within each elementary school attendance area, which are summarized above.
Actual Birth Rates as reported by California Department of Public Health

<table>
<thead>
<tr>
<th>Birth Year</th>
<th>Births[^1]</th>
<th>Kindergarten Year</th>
<th>Kindergarten Enrollment</th>
<th>Kindergarten Percent of Births</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>476</td>
<td>2005</td>
<td>547</td>
<td>114.92%</td>
</tr>
<tr>
<td>2001</td>
<td>460</td>
<td>2006</td>
<td>568</td>
<td>123.48%</td>
</tr>
<tr>
<td>2002</td>
<td>453</td>
<td>2007</td>
<td>542</td>
<td>119.65%</td>
</tr>
<tr>
<td>2003</td>
<td>467</td>
<td>2008</td>
<td>497</td>
<td>106.42%</td>
</tr>
<tr>
<td>2004</td>
<td>391</td>
<td>2009</td>
<td>460</td>
<td>117.65%</td>
</tr>
<tr>
<td>2005</td>
<td>416</td>
<td>2010</td>
<td>484</td>
<td>116.35%</td>
</tr>
<tr>
<td>2006</td>
<td>387</td>
<td>2011</td>
<td>455</td>
<td>117.57%</td>
</tr>
<tr>
<td>2007</td>
<td>394</td>
<td>2012</td>
<td>480</td>
<td>121.83%</td>
</tr>
<tr>
<td>2008</td>
<td>382</td>
<td>2013</td>
<td>495</td>
<td>129.56%</td>
</tr>
<tr>
<td>2009</td>
<td>340</td>
<td>2014</td>
<td>421</td>
<td>123.82%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>118.80%</td>
</tr>
</tbody>
</table>

[^1] Information on actual births in ZIP Code 90266 obtained from CDPH.

In order to more accurately project the number of students to be enrolled in the School District for any given year, information on the total births within ZIP codes served by the School District from 2000 through 2012 is obtained from the California Department of Public Health (“CDPH”). On average, the kindergarten percent of births is 118.80%, indicating that additional children are moving into the School District to attend kindergarten than those born within the School District’s boundaries.

Projected Birth Rates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>340</td>
<td>N/A</td>
<td>2014</td>
<td>N/A</td>
</tr>
<tr>
<td>2010</td>
<td>314</td>
<td>N/A</td>
<td>2015</td>
<td>0.9700</td>
</tr>
<tr>
<td>2011</td>
<td>328</td>
<td>N/A</td>
<td>2016</td>
<td>1.0446</td>
</tr>
<tr>
<td>2012</td>
<td>325</td>
<td>130,312</td>
<td>2017</td>
<td>0.9909</td>
</tr>
<tr>
<td>2013</td>
<td>N/A</td>
<td>131,697</td>
<td>2018</td>
<td>1.0106</td>
</tr>
<tr>
<td>2014</td>
<td>N/A</td>
<td>131,765</td>
<td>2019</td>
<td>1.0005</td>
</tr>
<tr>
<td>2015</td>
<td>N/A</td>
<td>133,043</td>
<td>2020</td>
<td>1.0097</td>
</tr>
<tr>
<td>2016</td>
<td>N/A</td>
<td>134,145</td>
<td>2021</td>
<td>1.0083</td>
</tr>
<tr>
<td>2017</td>
<td>N/A</td>
<td>135,214</td>
<td>2022</td>
<td>1.0080</td>
</tr>
<tr>
<td>2018</td>
<td>N/A</td>
<td>136,253</td>
<td>2023</td>
<td>1.0077</td>
</tr>
<tr>
<td>2019</td>
<td>N/A</td>
<td>137,369</td>
<td>2024</td>
<td>1.0082</td>
</tr>
</tbody>
</table>

[^1] Birth rates for 2014 to 2015 is based on an historical average. Birth rates for kindergarten years 2015 through 2017 are based on actual births within ZIP Code 90266 from CDPH. Subsequently birth rates for kindergarten years 2018 through 2024 birth rates are based on projected births within the County of Los Angeles from the Department of Finance (“DOF”).

In order to project kindergarten enrollment for the Study Period, the birth rate for 2014 to 2015 is based on the historical average while birth rates for kindergarten years 2015 through 2017 are based on actual births within ZIP Code 90266 from CDPH. Subsequently birth rates for kindergarten years 2018 through 2024 birth rates are based on projected births within the County of Los Angeles from the Department of Finance (“DOF”). A summary of the actual and projected birth rates for the School District is shown in the table above.
Cohort survival factors were incorporated to determine the percentage of students in any given year who matriculate to enter the next grade in the following year. Secondly, birth rates were incorporated into the projection. Utilizing these inputs and methods, student enrollment of the School District is projected to continue to decrease through school year 2024/2025 as a whole. However, during the Study Period, the Elementary School Level will increase slightly starting in 2023/2024 after 8 years of decline and the High School Level will also experience a slight increase. As shown in the bar chart, the student enrollment of the School District is projected to decrease by 4.58 percent to 6,568 students by the end of the Study Period. Currently and over the next few years, the School District is projected to experience its peak student enrollment. By school year 2020/2021, student enrollment is projected to begin its decline. However, even at its lowest point at the end of the Study Period, projected enrollment will continue to exceed student enrollment from school year 2003/2004.

At the elementary level, enrollment is projected to decrease from 2,819 students to 2,631 students, equating to an 6.67 percent negative growth. Of the five (5) elementary schools, four (4) schools are projected to experience student enrollment decline by the end of the Study Period. At the middle school level, enrollment is projected to decrease by 4.58 percent to 6,568 students by the end of the Study Period. Currently and over the next few years, the School District is projected to experience its peak student enrollment. By school year 2020/2021, student enrollment is projected to begin its decline. However, even at its lowest point at the end of the Study Period, projected enrollment will continue to exceed student enrollment from school year 2003/2004.

At the elementary level, enrollment is projected to decrease from 2,819 students to 2,631 students, equating to an 6.67 percent negative growth. Of the five (5) elementary schools, four (4) schools are projected to experience student enrollment decline by the end of the Study Period. At the middle school level, enrollment is projected to decrease from 1,525 students in school year 2014/2015 to 1,346 students in school year 2024/2025. This equates to a 11.74 percent decrease in student enrollment at the middle school level. At the high school level, enrollment is projected to increase from 2,539 students in school year 2014/2015 to 2,591 students in school year 2024/2025. This equates to a 2.05 percent increase in student enrollment at the high school level. The table above details the projected enrollment change during the Study Period.

[1] Please note that Pennekamp and Grand View Elementary’s cohorts for Kindergarten through 1st grade include traditional kindergarten.
In conclusion, since kindergarten classes have seen a decrease in enrollment and there are projections for lower birth rates within the School District, the student enrollment of the School District is expected to decrease throughout the Study Period. This decline may be mitigated by accepting more inter-district transfer students and/or offering full day kindergarten classes.

It is important to note that the projections of enrollment in the Study identify data and analysis conducted in the first quarter of 2015. Student enrollment is dynamic and fluid. The Study utilizes trends of enrollment for the past several years to estimate student enrollment out into the future. While this is the standard methodology, it does have limitations in that there are many factors that have produced the trends of the recent past that may or may not continue. It is, therefore, important for the School District to monitor the enrollment on an annual basis and evaluate any changes in trends that may occur. Further, the Study is intended to assist the School District on how to accommodate student enrollment and, in doing so, aims to ensure that the School District may provide adequate facilities on a timely basis to house future growth in enrollment. The projections in the Study are not intended for budgeting purposes, as the projections reflect moderate assumptions. Projections for budgeting purposes should reflect a more conservative approach.

Scenario A : Effect of Hermosa Beach SD Enrollment Projections

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Current Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary School Enrollment</td>
<td>2,819 2,774 2,717 2,649 2,593 2,544 2,554 2,582 2,594 2,613 2,631</td>
</tr>
<tr>
<td>Middle School Enrollment</td>
<td>1,525 1,548 1,502 1,514 1,538 1,524 1,451 1,373 1,324 1,326 1,346</td>
</tr>
<tr>
<td>High School Enrollment</td>
<td>2,539 2,547 2,740 2,828 2,903 2,986 2,931 2,929 2,937 2,858 2,740</td>
</tr>
<tr>
<td>Total District Enrollment</td>
<td>6,883 6,868 6,958 6,990 7,034 7,054 6,936 6,884 6,856 6,797 6,717</td>
</tr>
</tbody>
</table>

Scenario B : Effect of Residential Construction and Job Market Changes

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Current Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary School Enrollment</td>
<td>2,819 2,784 2,736 2,678 2,632 2,594 2,614 2,651 2,673 2,703 2,732</td>
</tr>
<tr>
<td>Middle School Enrollment</td>
<td>1,525 1,553 1,512 1,529 1,559 1,549 1,481 1,409 1,365 1,373 1,398</td>
</tr>
<tr>
<td>High School Enrollment</td>
<td>2,539 2,541 2,698 2,747 2,792 2,875 2,828 2,841 2,871 2,784 2,673</td>
</tr>
<tr>
<td>Total District Enrollment</td>
<td>6,883 6,877 6,948 6,954 6,963 7,018 6,923 6,901 6,909 6,859 6,803</td>
</tr>
</tbody>
</table>
Vision
The vision of the Manhattan Beach Unified School District is to prepare our students to become good citizens, parents, workers and leaders in the complex, rapidly changing world they will inherit. They will develop strong self-discipline, inter-personal skills, personal values, social and civic responsibilities and respect for nature and for others. They will be able to move beyond us, each prepared to earn a living, cultivate a dream and make a difference.

Mission
The mission of the Manhattan Beach Unified School District is to prepare all of our students to meet the challenges of a rapidly changing, highly complex, technology rich, global society. We will continually strive for excellence in all aspects of the education process. We will teach our students to understand and appreciate human and cultural diversity. We will harness the resources of the entire community, including students, parents, teachers, staff, administrators, college and business leaders and others. We will empower students to be lifelong learners, to demonstrate high achievement and to develop the skills and characteristics needed to enjoy happy and successful lives.

Goals
The MBUSD Board of Trustees and MBUSD leaders will continue to communicate with our employees, parents, and students to develop, implement and monitor goals that will result in the best possible learning environment for our students.

Goal #1: Focus on Academic Strategies

• The MBUSD K-12 CCSS Math Team will make a recommendation for curriculum and instructional methodology during the 2014-15 school year for implementation in the 2015-16 school year.
• Utilize Math TOSA and UCLA research-practitioners to analyze the success of students in secondary math classes.
• Develop math common assessments to analyze student progress toward agreed upon standards.
• Collaboratively study and develop an academic calendar that meets the needs of high school students, including preparation for Advanced Placement classes, a semester break prior to Winter Break, and alignment with off campus summer opportunities.
• Engaging more students in innovative K-12 STEM (Science, Tech, Engineering and Math) lessons, classes and extracurricular opportunities.
 • Maker classes/clubs
 • Robotics
 • Fab Lab/Maker
• More Students in STEM middle school classes
• Continue focus on student-centered instruction, stressing that student learning will go far beyond memorization, and having students spend more time on the 21st Century Skills of critical thinking, collaboration, communication, creativity and character.
• Promoting the development of knowledgeable, responsible and caring students through a strengthened emphasis on social and emotional learning.

Goal #2: Focusing on Career Development and Continuous Learning for all Staff

• Hire and support staff who recognize that their primary goals are to provide the highest quality education for all students, to embrace the value of lifelong learners, to create an environment of trust, respect and mutual support within the school and broader community and to support students as unique individuals.
• Developing best strategies for teaching ELA Common Core standards across all curricular areas.
• Integrating technology as a 21st Century tool for teaching and learning, utilizing TOSA to support teachers and developing recommended uses for technology at each grade level and/or subject area.
• Utilizing formative assessment data and common assessments effectively to assess student progress, analyze results, then adapt curriculum. Using summative assessment data to develop effective programs and adapt instruction.
• Implementing the Pilot Standards-Based Teacher Evaluation System.
• Implementing the new standards-based administrator evaluation system.
• Developing a standards-based evaluation system for counselors.
• Developing a new classified evaluation system

Goal #3: Continuous Improvement of Secondary Schools

• Developing strategies to personalize school for all students through differentiation, engagement, communication and the effective use of technology.
• Creating clear pathways for college and career, including increasing visibility of the college and career center and having MBUSD college counselors visit colleges regularly.
• Optimizing the master schedule based on student requests.
• Maximizing preparation for college by increasing the number of students succeeding in AP classes.
• Effectively utilizing PowerSchool with frequent grade updates to communicate assignments, grades and progress to families. Provide training as necessary to achieve this goal.
• Examining the role of career-technical education, both in our schools and at SoCalROC.
• Improve communications with students at Mira Costa High School, including lunches, and making sure that there is two-way communication between student board members and MCHS students.
• Determining district policy on high school summer school classes that will be accepted for credit.

Goal #4: Maintain a Sound Budget Focused on Maximizing Student Achievement

• Communicating and maintaining transparency in the Board’s budget process.
• Successfully transition to a new Assistant Superintendent of Administrative Services.
• Support the MBUSD/MBUTA/CSEA Health Benefits Committee’s efforts to reduce costs of health and welfare benefits.
• Increase efforts to communicate the district budget and financial conditions to employees, parents and the public.
• Collaborating and clarifying relationships with MBEF, PTAs and MBX.
 • Examine and clarifying PTA vs. district funding for department and supplies
 • Delivering the Mira Costa Measure BB-funded construction project on time and on budget.
 • Making total compensation of MBUSD employees competitive with like districts.
• Develop long term facilities plan using long-term student enrollment plans.
 • Examine safety and fencing at all campuses
Process Overview

By envisioning this process as a ‘map to success’, DLR Group assisted the Manhattan Beach Unified School District with the development of this Facilities Master Plan over a period of six months starting on January 20, 2015, and culminating by presenting the plan to the Board of Education on July 15, 2015. The process was designed to involve the appropriate District, parent and community participants with each phase of the Facilities Master Plan.

The desire of the Manhattan Beach Unified School District was to have the process unfold in a transparent and informative manner, involving all stakeholders to determine the immediate needs of the District as well as envision what the future educational needs of the students will entail. Following is the flow chart of the ‘map to success’.

Step 1: Research and Discovery
This phase included extensive research of District archives and records to gather background information to assist in overall knowledge of the District and schools, including demographics, site and building plans, and recent projects. This research provided the foundation to develop the assessment process, as well as the overall organization of the process tasks and schedule. Of particular importance in this initial phase was the selection and establishment of the District’s core planning group and the guiding principles summit for establishing design guidelines for future projects.

Step 2: Facilities Assessments
A team of trained field assessors visited every site within the District to review, photograph and note physical condition deficiencies related to six pre-determined major review categories. Those repair items helped to establish timelines for projects while project costs were developed.

Step 3: Community Outreach
Through a series of eight community forums, input was gathered from parents, teachers, staff and students from every school in the District. The forums included a presentation on Next Generation educational design trends prior to each school site developing and presenting their needs and wants to the forum. Each school site also identified their top three projects for the future master plan of the school, as well as identifying project repair needs.

Step 4: Educational Specifications
This step provided more specific and detailed information about the components within the identified projects by defining specific facility needs required to complement the educational delivery and to provide consistency among similar project types. Educational Specifications were developed through a series of meetings with various District staff, including curriculum, facilities and site administrators.

Step 5: Master Planning
Drawing upon our community forums, website surveys, physical assessments and educational adequacy site walks, a comprehensive master plan document was produced for each school site. The master plan identifies the comprehensive repair and renovation projects, as well as new building and site enhancement projects.

Step 6: Finalization and Implementation
The final step involved listing and cost estimating of all physical assessment repair “needs” and educational adequacy “wants” for all school sites. Considerations of funding sources were also explored.
The Core Planning Group

The Core Planning Group (CPG) was established as the interface between the design team and the District in the development of the Facilities Master Plan. The CPG was comprised of a diverse mix of District administrators, site principals and teachers, facilities and maintenance staff, community members and members of the Manhattan Beach Unified School District Board of Trustees. Specific members of the CPG also participated on the Campus Master Planning Committee and the Educational Specifications Committee. The purpose of the CPG is to be the “Voice of Manhattan Beach” to the DLR Group team to provide guidance throughout the master planning process, from the facilities assessments to the project prioritizations.

For a complete list of Core Planning Group, Master Planning Committee and Educational Specifications Committee members, see participants list at the beginning of this document.

Establishing the Guiding Principles for Design

On January 20, 2015, the Core Planning Group, along with additional District and community members invited by the District, came together with the DLR Group team at the “Guiding Principles Summit” to discuss the goals and objectives to be embodied in the design of all future Manhattan Beach Unified School District projects. After an introduction of the Facilities Master Planning process, Dr. Michael Matthews, Superintendent, presented the group with the Manhattan Beach Unified School District’s vision for educating students in the 21st century. Next, Brett Hobza of DLR Group led a presentation to the participants that highlighted the current direction in educational curriculum and design. Mr. Hobza also presented several examples of guiding principles developed for other schools districts.

The participants were then divided into four smaller groups and asked to think about the goals and objectives they considered critical to the success of the District for future projects, while framing them in context with the District’s vision for the future of student learning spaces. With facilitation from the DLR Group team, Brett Hobza, Kevin Fleming and Virginia Marquardt, each group prepared their ideas and presented them with their supporting thoughts to the entire group for consideration. The list of ideas and goals were then compared and consolidated to develop six major Guiding Principles:

- LC Learner Centered
- NC Nurturing the Whole Child
- CP Community Partner
- AM Aesthetics Matter
- T Leverage Technology
- S Sustainability

DLR Group took the notes and ideas collected at the Guiding Principles Summit and developed final written Guiding Principles that were distributed, reviewed, edited and approved by the Core Planning Group and the District. These Principles, provided below, sit as the centerpiece of the master plans developed for every school site in the Manhattan Unified School District.
We believe that learner centered education must provide safe, engaging and challenging environments that focus on inquiry and problem solving, accommodating various approaches to individualized and collaborative learning. They should foster innovation, persistence and curiosity, inspiring students to be lifelong learners who contribute responsibly to their community and the world. Our schools should offer a variety of gathering spaces and learning opportunities, both indoor and outdoor, to display and celebrate students’ work and achievements.

We believe in creating a comprehensive educational experience that reflects the critical importance of and interrelationship among all disciplines, including athletics, foreign language, language arts, math, science, social science, and the visual and performing arts. Our schools must reflect the importance of providing learners with a variety of academic, artistic, and athletic performance experiences to facilitate an understanding of the synergies between areas of study.

We believe we are partners in upholding the high quality of the Manhattan Beach community. We benefit from the tremendous support of our community members and, therefore, our campuses must continue to be community centers as much as centers for learning. With this commitment comes the responsibility of campus design to find a balance between openness and safety and security.

We believe that through cost-conscious design we must convey the high value we put in education to our learners, our staff, and the greater community while respecting historic architectural character. Whether an educator, learner, or neighbor, all need to feel a sense of dignity and ownership of their surroundings that inspires imagination and exploration. Safety and security measures will be integrated into the campus designs maintaining a welcoming aesthetic experience.

We believe our learning spaces must remain relevant by leveraging technology to allow our learning environments to adapt, evolve, and grow as learning strategies change over time. Our schools must facilitate learning that can take place anywhere, at any time, using various media and devices. Technology connects our learners to global knowledge beyond the learning space, and provides academic equity and parity for all learners.

We believe that our schools must be models of sustainability and energy efficiency to be good stewards of global resources and taxpayer dollars, encouraging lifelong awareness and ecologically responsible practices for our learners. Design must consider conservation of resources and durability and maintainability of materials and systems.
CHAPTER 2
FACILITIES ASSESSMENTS
Introduction

The assessment of existing facilities is a critical step in development of the Facilities Master Plan (FMP). For the Manhattan Beach Unified School District, it is particularly crucial due to the age of the schools in the District and the significant need for general repairs and upgrades. Assessing each campus to identify needs and to assign costs to those needs was a main concern to the District. DLR Group teamed with EMG to perform detailed facilities assessments of each campus. The information collected helped us understand the magnitude of cost of modernizing facilities, prioritizing projects, and implementing the FMP. The resulting assessment database will also help the District evaluate the uses of District properties.

Physical assessments is just one measure of the condition and adequacy of a school site. In order to gain a true understanding of each school site, an educational adequacy and functional needs analysis must be performed. The team of DLR Group designers and educational specialists visited and assessed each site to evaluate the educational and functional adequacy, and to identify opportunities for creating next generation learning environments.

Process Overview

A thorough facilities assessment relies on an organized structure and a detailed process in which the quality of reliable data is a priority. This approach for Manhattan Beach USD allowed us to acquire precise information from appropriate sources, enabling us to produce reports that will be valuable to the District. The process is outlined below:

Step 1: Internal Kick-Off Workshop

The process began with a meeting between the DLR Group team and the MBUSD staff and management to review expectations and set a schedule for key events including:

- MBUSD maintenance staff interviews and surveys for building, mechanical, electrical, technology systems
- Process, reporting schedule
- Sample database verification
- Field assessment training orientation
- Assessment of all properties
- Database development requirements
- Final assessment report content

Step 2: Staff Interviews and Surveys

To understand the characteristics of each property beyond what is recorded in existing archive materials, the DLR Group team interviewed knowledgeable MBUSD staff and provided them surveys to capture their input and perspective. Staff members included: Principals, Maintenance and Operations Professionals, and Building Trades Specialists.

Step 3: Sample Verification

Each client is unique, as such, is the reporting and asset database. For the District’s accelerated schedule, the DLR Group team implemented an accelerated Pre-Test process. The DLR Group team presented sample schemes of facilities databases. These sample schemes included proposed parameters and Grading Categories.

The sample schemes were evaluated with MBUSD to confirm that the necessary information would be compiled, meaningful results would be obtained, and the information necessary to make a long-term strategic plan would be gathered.

Step 4: Initial Team Orientation and Field Assessment

The DLR Group assessment team convened at the first assessment site, along with the MBUSD team, for an assessment orientation. The teams discussed and agreed on a procedure for gaining access to the sites, a schedule for visiting the sites, and what to expect from the DLR Group professional team during the assessments.

Step 5: Field Physical Facilities Assessments

All of the District’s sites were assessed using the criteria and methods developed by the Team. Focus was brought to observations that would clearly identify the components being evaluated, along with the repairs to restore the system or component to optimal condition.

- Current Condition: An assessment of the current condition of system components, and a determination of the level of repair necessary to restore system component to optimal condition.

- Property Characteristics: An inventory of all building systems to quantify each system component as a count, an area, a length, and/or a height as appropriate so costs could be assigned.
Educational Adequacy Assessments

A critical component to the Facilities Master Plan is the Educational Adequacy Assessments. Site assessments were performed by DLR Group designers and educational specialists. The reviews concentrated on concepts such as 21st-Century Learning Environments and opportunities for creating those spaces within existing schools.

Another measuring stick for the educational functionality of schools is the California Department of Education design standards which provides a minimum basic guideline for school facilities. In addition to these standards, the Educational Specifications being developed within this process will serve as yet another measure specific to the schools in Manhattan Beach Unified School District, as well as issues such as site equitability. The results of the assessments were to identify deficiencies for inclusion into the site specific master plans to provide an upgrade to each school site. The following items were reviewed for the following components:

- Rooms types provided
- Room sizes and capacities
- General functionality and flow
- Administrative offices
- Numbers, functionality and size of classrooms
- Library and media centers
- Physical education spaces, including gymnasiums, weight and locker rooms
- Cafeterias, performing arts facilities, and assembly spaces
- Specialty classrooms, such as art, music, and CTE spaces
- Outdoor learning and gathering spaces
- Outdoor fields and courts provided

21st-Century Learning Environments

A key component of the master planning process was the review of sites for 21st-Century Learning environment opportunities. These site reviews by the DLR Group team of designers and educational planners provided focus on building and space layouts, functionality, and educationally relevant and required components rather than the physical nature of the original assessments. The environments required a close look at varying classroom configurations, library/media centers and interaction with and in outdoor spaces.
Guiding Principles of Design

With the establishment of the Guiding Principles, each site was also evaluated for conformance and opportunities to adhere to those standards:

- **LC** Learner Centered
- **AM** Aesthetics Matter
- **NC** Nurturing the Whole Child
- **T** Leverage Technology
- **CP** Community Partner
- **S** Sustainability

Sustainability

The District’s deep commitment to sustainability is evidenced by existing programs such as no-trash lunches and other waste reduction measures, readily-accessible recycling, and gardens with composting facilities. Many sustainability measures were implemented with the help of the Manhattan Beach Grades of Green – which began at Grand View Elementary and is now nation-wide. Following a series of Green Ribbon School awards, the District itself was presented with a Green Ribbon Silver award by the Department of Education in 2015.

Most of the campuses have “green bones” – in the form of narrow buildings with operable windows and clerestories that allow abundant natural daylight, and large operable window / walls that open to well-used and well-loved outdoor learning areas.

Health: Clerestory windows allow abundant natural light, which is good for learning and helps to save energy. Operable windows take advantage of breezes for cooling. Natural lighting and operable windows should be retained and utilized.

Indoor Environmental Quality: Existing floors are primarily vinyl composition tile. Use of this sort of hard surface avoids the dust and mold associated with carpet. Low-VOC paints and other finishes are required by CALGreen. Views to sky and landscape.

Water: As toilet rooms are upgraded and fixtures are replaced, the new fixtures will necessarily be CALGreen-compliant – which will yield reductions in water use. Similarly, any replacement irrigation controllers will be moisture-monitoring for CALGreen compliance, and should result in more efficient use of irrigation water. Further reduction may be achieved by considering use of synthetic turf systems, rainwater harvesting, and native and adapted landscape planting.

The District uses reclaimed water for irrigation at most of its sites. The West Basin Municipal Water District operates the Edward C. Little Water Recycling Facility (ECLWRF), the largest such facility in the nation, located in nearby El Segundo. Tertiary (Title 22) reclaimed water is used for 100% of the irrigation at Mira Costa High School, Manhattan Beach Middle School, Pennekamp Elementary School, and the Education Center (District Offices). Partial reclaimed water irrigation systems are present at Grand View Elementary School, Meadows Elementary School, and Robinson Elementary School. The reclaimed water utility lines do not currently extend to the Pacific Elementary School campus. We note that the District is actively pursuing additional measures to reduce potable water use for irrigation.

Energy: Replacement lighting systems will likely have multi-level controls, which will take advantage of the available daylighting for overall space lighting resulting in energy savings. Most-classrooms currently have heating only. The absence of cooling systems equates to savings in energy, maintenance, code-required controls systems and related costs. Our understanding is that there is a desire to incorporate cooling in the classrooms. We recommend that this decision be carefully considered with regard to long-term cost and energy use. Where HVAC systems are added or replaced, the building envelope must be considered. High-efficiency glazing and wall and roof insulation will be necessary for energy code compliance. We also recommend leveraging the cooling from operable windows.

A photovoltaic panel installation is planned for Mira Costa High School during the summer of 2015. Most of the campuses have existing surface areas and orientations that are advantageous for solar energy systems, and we recommend that this program be extended to the other campuses as opportunities arise.

Site Improvements

Includes underground utilities, paving, grading, parking, fields, bleachers, sidewalks, scoops, landscaping and irrigation.

Architecture & Structure

Includes exterior walls and finishes, roofing and drainage, doors and windows.

Building Systems

Includes electrical, lighting, power, data, signal, fire alarm, phone, clock/PA, HVAC equipment, ductwork and controls, plumbing and fire sprinklers.

Interior Spaces

Includes interior walls, floor and ceiling finishes, doors and windows.

Furniture, Fixtures & Equipment

Includes casework, marker boards, screens, projectors, stage/heater accessories, shelving, bleachers, kitchen equipment and other accessory items.

Other Structures & Improvements

Includes site fencing and signage, accessibility and code compliance, life-safety components, portables, and general infrastructure.
Site Utilities. Domestic (potable) water supply piping is adequately sized and in generally good condition throughout the District, and filtration systems were recently installed at drinking fountains at most schools. Most sanitary sewer piping is aged and insufficiently sized for current school populations, which has led to problems at several schools. Electrical and natural gas service equipment are in mostly good condition. Recommendations: Monitor campus potable water supply quality, both at the campus source and at individual outlets at each campus. Study domestic pipe replacement on a site-by-site basis. Replace sanitary sewer systems throughout the District.

Parking and Drop-Off Areas. When most of the Manhattan Beach Unified schools were constructed, on-site parking areas were minimal and automobile drop-off was not a consideration. A number of school sites have added parking and drop-off areas, but at most of the elementary school sites they conflict with traffic and pedestrian flows. Parking for staff and visitors is generally undersized. Recommendations: Prioritize upgrades to drop-off areas and traffic flow. Study parking capacity expansion on a site-by-site basis. Perform traffic studies where warranted.

Site Walks, Ramps and Stairs. Paths between site arrival points and buildings or classroom entrances are in fair condition. Some exceed limits for accessible cross slopes, running slopes, or both. Many walks have non-accessible drain grates, projecting elements, or tripping hazards such as door stops and threshold ramps. Drainage is generally good, with some localized problem areas. Handrails of most ramps and stairs, regardless of age, are of improper design for accessibility or structural integrity, and many handrails are damaged or deteriorated. Recommendations: Replace walks and ramps that exceed accessible slopes or are in poor condition. Replace improper or damaged handrails. Replace or remove related non-compliant pathway elements.

Drainage and Erosion Control. All of the campuses are apparently free of major problems with surface water management and erosion, with the notable exception of the four-story building at Ladera. The sites have swales and underground storm drain systems that appear to be adequately sized. There is localized ponding in some locations. Some components of the existing drainage systems, such as grates at area drains and swales at walkways, do not comply with accessibility requirements. Recommendations: Make improvements at ponding areas, add swales to direct surface water flow, add storm drain inlets to remove surface water. Consider on-site, run-off filtration systems such as bioswales and retention structures, which may become necessary to fulfill current storm water management practices and requirements. Replace grates and improve walkways for an accessible path of travel.

Landscape and Irrigation. The landscaping and irrigation conditions vary from site to site. The District provides maintenance to repair existing systems but has not pursued replacement of older, less efficient systems. Most school sites have at least one area that is designated as a California native plant garden, and most have mature trees for shading. Recommendations: Replace older irrigation systems with higher efficiency, programmable, and moisture-sensing systems that comply with CALGreen. Replace water-intensive landscaping with drought-tolerant plants. Maintain or provide mature trees and shade structures to offset reduction of usable landscaping.

Play Fields. Most play fields in the District are included in a joint-use agreement with the City of Manhattan Beach and the City is responsible for play field maintenance. The fields are popular and heavily used. Most school sites have fields that suffer from irregular irrigation coverage, uneven surfaces and turf overtaken by weeds. Many backstops are in poor condition and need repair. Artificial turf has been installed in a few locations. Recommendations: Replace backstops in heavily-used areas and consider installing artificial turf to reduce water use.

Hard Courts. The court and play areas at most schools are worn and in need of repair. Asphalt surfaces are cracked and lifted in numerous locations on most school sites. Basketball backstops, tether ball and other court equipment is also generally in poor condition. Recommendations: Replace or resurface hard courts and replace dated and worn equipment on a site-by-site basis.

Play Structures/Areas. Play structures at elementary school sites are in fairly good condition, but some will soon reach the end of their useful lives. The rubber surfacing condition varies from site to site, but surface-applied materials appear to have suffered the most. Recommendations: Replace surface-mounted rubber play materials with flush-to-grade surfaces. Replace aged play structures.
Roofing and Drainage. Roofing at District facilities is in fair to poor condition, with most roofs nearing or beyond their useful lives. Evidence of active roof leaks is present at most schools in at least some spaces, especially in modular buildings. Sheet metal flashing is often deteriorated. Where present, gutters and downspouts are in fair to poor condition, and are often clogged with debris such as tree leaves/needles. Recommendations: Replace roofs and flashing in phases aligned with age of existing roofing. Replacement roofs should provide a minimum slope that is appropriate to the material. Energy efficiency and interior temperature improvement can be improved with an R-30 insulation substrate and a Cool Roofs finish. Endeavor to reduce the number of elements on the roof (e.g., ducts, conduits, HVAC units), and reduce the number and size of roof penetrations. Clear debris from gutters and downspouts regularly and replace damaged or deteriorated elements.

Exterior Walls and Finishes. Wall finishes such as brick, stucco and CMU are in generally good condition at each campus. Much of the wood siding, wood fascia, and wood canopies and other projecting elements are warped, checked, and showing evidence of insect-related damage or dry-rot. Recommendations: Continue to seal and paint exterior walls and finishes regularly as part of ongoing building maintenance. Replace rotten wood exterior elements or replace with inorganic elements.

Stairs, Ramps and Landings. Concrete landings at building entrances tend to be in good condition, but slopes should be checked for accessibility standards. Related railings tend to be in fair to poor condition, and most do not comply with accessibility standards. Recommendations: Provide routine maintenance for compliant concrete improvements. Replace concrete and railings that do not comply with accessibility standards or that are deteriorated.

Exterior Windows. Most windows are narrow-framed steel with single-pane clear glass and are in generally good condition. At several sites, locks on operable windows are broken. Recommendations: Replace windows with thermally efficient frames and energy-efficient glazing.

Exterior Doors. Most doors are wood or hollow metal set in metal frames and appear to be in good condition. Door hardware installed in the last round of modernizations appears to be in good condition, although locks cannot be locked from inside the room. Most elementary classrooms feature large steel-frame glazed sliding doors on overhead and floor-mounted tracks, which allow the classrooms to open up to the exterior. These sliders are believed at most campuses, but they have deteriorated and are difficult to operate, and they do not meet thermal efficiency requirements. Recommendations: Doors and hardware should be reviewed on a case-by-case basis as part of modernization and upgrade projects to assure that all classrooms can accommodate lock-down from the inside of the room. Upgrade sliding doors with new hardware and pinch guards, or replace with a similar design using thermal frames and insulated glazing.

Building Structure. Erosion-related undermining of certain stair structures and floor slab cracks at the Ladera portion of Grand View Elementary School are the only visible structural deficiencies that were observed in the District. Most campus buildings are wood or concrete frame construction, and appear to be in relatively good condition, with no obvious evidence of differential settlement or structural deterioration. Several campuses show signs of termite infestation that requires mitigation and repair. Recommendations: Employ a qualified wood pest extermination company to examine each campus and implement mitigation procedures to address any discovered infestations and related damage. In addition, the District should retain a structural engineering firm to analyze the “AB 300 Inventory” buildings to determine their current seismic safety conditions and whether they should be structurally upgraded to comply with current seismic building codes; buildings requiring such upgrades could then be addressed in future modernizations or building replacement projects.

Building Codes and Seismic Upgrades. Building codes change as information is gathered from catastrophic events—natural or historic. Available evidence indicates that campuses in the District generally comply with the codes and standards that were applicable at the time of construction. Any subsequent construction must meet the requirements of building code that are in effect at the time the work is done. If subsequent work does not effect the building’s structural components, and does not increase the structural loads by more than ten percent, the current code does not require that the building structure be upgraded to the latest seismic safety standards. Most school modernization projects are limited to non-structural work, such as replacement of finishes and systems and access compliance improvements, therefore, the seismic safety upgrade requirement is seldom triggered by modernizations.

AB 300. In 1999, the State Legislature passed AB 300, which required the Division of the State Architect (DSA) to develop a list of school buildings that may be vulnerable to seismic events. DSA developed the list by reviewing their archives and identifying buildings by their age and type of construction. The 1976 Uniform Building Code was used as a baseline for seismic requirements. The result is known as the AB 300 Inventory, which lists K-12 buildings that did not meet minimum seismic requirements of the 1976 Uniform Building Code. The AB 300 Inventory lists buildings at Manhattan Beach Preschool, Meadows Elementary, Ladera, and Mira Costa High School. As each project is undertaken on a school site, the AB 300 Inventory should be checked to see if the affected buildings are included. If the proposed work is significant, or alters the structure, a complete structural analysis will be required.

We note that some campus buildings that do not appear in the AB 300 Inventory are similar to those that are included. Although an individual building may be in the AB 300 Inventory, we recommend a complete assessment by a registered structural engineer to assess whether or not there are any serious deficiencies.
Heating, Ventilating, and Air-Conditioning Systems. The temperate coastal climate of Manhattan Beach allowed that most District buildings contain heating systems only, usually through ducted gas-fired heaters in individual rooms. Operable windows and doors on sides of classrooms allow for cross-ventilation. Mechanical cooling is generally provided only in newer buildings and portable classrooms, and some administration offices and IT/network rooms have been retrofitted with small split system air conditioners. Recommendations: Upgrade and replace systems as they reach the end of their useful life, while migrating to individualized systems. Strive to remove ductwork from roofs, and conceal below roof ductwork in attic space as much as possible. Add air conditioning to gymnasiums.

Plumbing Systems and Fixtures. Most elementary school classrooms include a sink with a cold-only faucet to room. Older facilities tend to have a sink with a mixed-temperature faucet served by a small electric water heater. Large gas water heaters are located at school cafeterias. Drinking fountains are typically located near restrooms and food service areas, and most have been retrofitted with filters to improve taste. Many do not have accessible elements such as guards or are mounted at non-accessible heights. Recommendations: Provide routine maintenance for plumbing systems. Remove and cap existing classroom drinking fountain outlets. Replace existing non-accessible sinks with accessible models. Retrofit or replace existing drinking fountains to meet accessibility requirements.

Natural Gas Distribution. Each campus is served by a gas main on the adjacent public street, which appears to supply adequate pressure for each campus. Gas meters and regulators, which are typically located near exterior walls of buildings, appear to be in good condition. Most gas distribution piping is either underground or concealed within building construction, but what limited parts are visible appear to be in good condition. Recommendations: Provide routine maintenance for natural gas distribution systems. Monitor each campus for service disruptions and gas leaks.

Fire Protection Systems. All buildings are equipped with smoke detectors, fire alarms and portable fire extinguishers; however, only newer buildings include fire sprinklers. Fire hydrants were only observed along adjacent public streets at most campuses. Recommendations: Provide routine maintenance of fire protection systems. All new construction should be designed with fire sprinklers and consideration should be given to retrofitting existing construction with fire sprinklers. Smoke detectors should be regularly tested and replaced as needed. Fire alarm components should be regularly tested; due to replacement part scarcity, it may become necessary to upgrade older systems to fully addressable systems to comply with current codes.

Electrical Systems. Electrical service to each campus, most buildings, and most rooms appears to be adequate for current uses. Additional outlets have been requested at most campuses. Recommendations: Upgrade and replace systems through modernization designs. Electrical service equipment condition varies. Recommendations: Add outlets as necessary to support new technology, recondition or replace service equipment as necessary.

Lighting Fixtures. Classroom and common space lighting tends to utilize fluorescent fixtures. Some buildings and campuses have been upgraded to more efficient fluorescent lighting systems but most have not. Overall, most lighting systems need to be replaced and upgraded to use newer, more reliable and energy-efficient fixtures, as well as the use of energy controls such as daylight and occupancy sensors. Recommendations: Upgrade and replace systems through modernizations and space reconfigurations. Consider switching to LED fixtures in the future.

Flooring. Classroom floors are mostly carpet in older facilities and vinyl composition tile (VCT) in newer facilities. Kitchens and cafeterias tend to be VCT, sheet vinyl, or similar resilient flooring. Restrooms are typically terrazzo in older facilities and ceramic tile in newer facilities. Overall, flooring is in good to fair condition, but some older materials (especially restroom terrazzo) are in poor condition. Recommendations: Replace flooring on a school-by-school basis as needed and with modernization projects, including providing VCT or other vinyl material adjacent to sinks. Test for and remediate old vinyl asbestos tile flooring where occurs. Consider using VCT and other hard floor materials in lieu of carpet as a means of improving indoor air quality. Rehabilitation terrazzo where possible, or replace with ceramic tile where rehabilitation is not possible.

Ceilings and Walls. Ceilings vary significantly across the District, not just from campus to campus but even from room to room. Older facilities tend to have exposed structure, and adhered acoustical tiles, while newer facilities tend to have suspended acoustical ceiling tiles. Restrooms and kitchens have painted gypsum board ceilings. Enclosed ceilings and exposed structure often require exposed utilities such as electrical conduit and mechanical ducts. Recommendations: When modernizing or remodeling classrooms with exposed structure, exposed utility components should be carefully coordinated during design and construction to ensure the quality of the space is maintained. An alternate approach is to conceal utilities behind suspended ceilings and furred walls where space allows, but this approach could adversely affect the existing quality of many spaces. Consider adding tackable wall panels at classrooms. Remove adhered acoustic tiles and replace with similar adhered system. Replace acoustic panels in suspended ceilings and the entire ceiling system, if warranted, by new work. Ceiling and wall finishes should have sound absorptive qualities that contribute to the acoustic quality of the rooms.

Interior Doors and Windows. Interior doors and hardware are generally in good condition. Interior door hardware appears to be in compliance with accessibility and fire/life safety requirements. Interior windows are not common but are in good condition where they occur. Recommendations: Provide routine maintenance on interior doors and windows.

Corridors. Where interior corridors occur, they tend to have vinyl composition tile flooring, painted gypsum board walls, and free suspended ceilings (liner adhered tiles or suspended panels). Many corridors, interior and exterior, feature decorative ceramic tiles and other artwork created by students. Recommendations: Provide routine maintenance on corridors. Protect existing artwork installed on walls, including ceramic tiles and painted murals.

Restrooms. Most school sites contain at least one accessible restroom each for boys and girls, but accessible restrooms for adults (staff and visitors) are not consistent. Finishes and plumbing fixtures vary from fair to poor condition. Ventilation is noticeably poor in most restrooms. Restroom doors at most older facilities are too narrow and create bottlenecks for efficient circulation. Recommendations: Each campus should have at least one accessible restroom each for boys, girls, men, and women. The District should develop plans to upgrade all restrooms to ADA and CBC accessibility and utility components should be carefully coordinated during design and construction to ensure the quality of the space is maintained. An alternate approach is to conceal utilities behind suspended ceilings and furred walls where space allows, but this approach could adversely affect the existing quality of many spaces. Consider adding tackable wall panels at classrooms. Remove adhered acoustic tiles and replace with similar adhered system. Replace acoustic panels in suspended ceilings and the entire ceiling system, if warranted, by new work. Ceiling and wall finishes should have sound absorptive qualities that contribute to the acoustic quality of the rooms.

Quality of Space. Most older facilities feature classrooms with high ceilings (often with exposed structure), clerestory lighting systems but most have not. Overall, most lighting systems need to be replaced and upgraded to use newer, more reliable and energy-efficient fixtures, as well as the use of energy controls such as daylight and occupancy sensors. Recommendations: Upgrade and replace systems through modernizations and space reconfigurations. Consider switching to LED fixtures in the future.
Most casework consists of composite or engineered wood products with plastic laminate surfacing. Age and condition varies from campus to campus and even from room to room. Many sites continue to have original casework that is worn and poorly operating, or casework from “light modernizations” performed in the 1990s. Much of the casework is not accessible, especially where sinks are located within the cabinet. Recommendations: With the move toward flexibility in Next Generation Learning Environments, many of the older cabinets will likely be removed and not replaced. That which remains should be replaced with new accessible casework and sinks.

Window Coverings. Most of the schools have horizontal slat blinds. Some of the elementary schools have had the older vertical blinds replaced with roller-type blinds. Some of the clerestory windows do not have window coverings. Recommendations: Maximize daylight in classrooms by removing and replacing existing window coverings with light, easy to maneuver shades, including motorized shade devices on clerestory and similarly high-position windows. Where window coverings cannot be installed, provide adaptable video and other display-based technology that is visible in direct or indirect daylighting.

Kitchen Equipment. Kitchen equipment is in mostly good condition, though some items are nearing the end of their useful lives. The District maintains a central kitchen at the Middle School for bulk food preparation, leaving the kitchen facilities at other campuses to serve as “warming” or serving kitchens with limited numbers and types of equipment. Recommendations: Provide routine maintenance for kitchen equipment. Consider relocating central kitchen facility. Continue to replace older equipment with newer and more efficient components and revise spaces to improve functionality.

Classroom Furniture. Most schools utilize the same classroom furniture throughout a particular campus, with smaller variations featured at Kindergarten classrooms; however, the functional diversity of classroom furniture vary from campus to campus. The typical classroom desk and chair combination follows traditional education concepts and may not be suitable for the kind of flexibility demanded by Next Generation Learning Environments. Recommendations: The District should standardize on a particular collection of furniture that maximizes function and flexibility such as adjustable height folding tables that can be reconfigured to specific instructional needs or stacked out of the way for larger group activities.

Fire Extinguishers. Portable fire extinguishers are provided throughout each campus, typically in administrative areas, classrooms, and public assembly spaces. They appear to be in good working order, and records indicate recent and regular inspections as required by law. Some school buildings feature fire hose cabinets, some of which also contain portable fire extinguishers. Recommendations: Provide routine maintenance and inspections as required.

Freestanding Signs. Several campuses feature free-standing “marquee” signs on one or more poles or pylons. These signs are in good condition but many do not feature current “campus identity” elements related to their respective schools. Recommendations: Existing freestanding signs should be evaluated for structural integrity and removed, repaired or altered as necessary to ensure the safety of students, staff and the general public. Repaired or altered sign faces should incorporate current “campus identity” elements, such as colors, fonts and logos, to better represent each school’s unique nature within the District.

Site Lighting. Parking areas are typically illuminated by area light fixtures atop metal street standards. Pole- and building-mounted fixtures provide lighting along walkways, drive aisles and buildings throughout each campus. All site lighting was observed to be in good condition. Recommendations: Provide routine maintenance of site lighting. Replace fixtures as damaged or at end of useful life.

Perimeter Fencing. Most campuses have a combination of ornamental and chain link fencing along most, but often not all, of their perimeter. Every campus in the District is easily accessible to the general public. The District holds joint-use agreements with the City of Manhattan Beach and various organizations that allow for public use of athletic fields and hard courts at most campuses, as well as certain athletic buildings at some campuses. As a general rule, these joint-use areas are not separated from the rest of the campus. Recommendations: Secure campus perimeters. Separate the primary campus from field and hard court areas with ornamental fencing, limiting building and other access to primary entrances and visible locations. Provide chain link fencing at field and hard court areas. Provide separate toilet facilities beyond secured perimeter for joint-use activities.

Modular/Portable Buildings. Every campus in the District currently houses modular buildings, also known as “portables” or “relocatables,” to provide additional classrooms and other campus functions. These portable classrooms number from as few as four to Robinson, the age, quality, and functionality of classroom furniture vary from campus to campus. The typical classroom desk and chair combination follows traditional education concepts and may not be suitable for the kind of flexibility demanded by Next Generation Learning Environments. Recommendations: Remove modular classroom buildings and replace with permanent building construction. Existing modular classrooms can be utilized as interim housing during modernization and other site work at each campus. Once water intrusion and other controllable sources of deterioration have been addressed, existing modular storage/maintenance buildings can be re-tasked for use as remote playfield storage, agricultural sheds, or small group activity centers.
Universal Accessibility and Code Compliance. Comments identifying easily observable accessibility issues are dispersed throughout this summary. However, an in-depth report of each item, as would be prepared by a Certified Access Specialist (CASp) or similar qualified inspector, was not included in the scope of the facilities assessments. MBUSD upgraded some access components in a series of modernizations completed in the late 1990s using Measure A funds. These upgrades were done in compliance with accessibility standards and codes in effect at that time. However, most of the components do not comply with current accessibility standards and codes. The District has updated many campuses for accessible routes through the site, but many parts of such routes contain barriers or otherwise remain non-accessible. Most school sites contain at least one accessible restroom each for boys and girls, but most existing sanitary facilities do not meet accessibility requirements. Most schools have numerous other accessibility issues that should be corrected, including sinks, countertops, casework, door clearances, corridor and opening widths, play structures, and door thresholds. Recommendations: For each campus, the District should develop both a “Barrier Removal Plan” to address on-going accessibility compliance issues (such as clear floor space requirements and signage) and an “ADA Transition Plan” to address short- and long-term accessibility improvements (such as ramps, elevators and parking). Unresolved items in the ADA Transition Plan for each campus must be addressed in accordance with current accessibility standards and codes as buildings and site elements undergo modernizations and other alterations. New projects identified within the Master Plan will include accessibility work as it relates to the scope of the particular project and the associated path of travel to parking areas, public ways, restrooms and other accessible elements and locations on each site.

Hazardous Materials. The assessments note the presence of hazardous materials when they were obvious and observable. However, a district-wide hazardous materials assessment and an Asbestos Hazard Emergency Report Act (AHERA) report were not generated in the assessment process, so there is not a complete accounting of all potential hazardous materials in the FMP. The Replacement Cost Index and the Project Lists noted in the master plans do not provide individual line items for hazardous material removal or abatement. It is assumed, based on the ages of the schools and observations, that removal and abatement will be required of materials such as: vinyl asbestos tile; lead paint; asbestos in gypsum wallboard tape joints; glue in ceiling tiles; plumbing and hydronic line pipe wraps; roofing and mastics. Recommendations: Prior to the start of each new construction project, the buildings, structures and other improvements within the scope of work or likely to be physically encountered during the scope of work should be verified for the presence of hazardous materials so they can be removed as a part of the construction process.

Technology Infrastructure. The cultural reality of more devices in the classrooms means that a network can quickly become saturated. Some of the District’s system components have become outdated, or have reached the end of their useful life. Cabling is older: most drops are reportedly outdated Category 5. MDFs and IDF’s are in undesirable or inconvenient locations, and schools do not have work space for Information Technicians, who play a key role. Recommendations: Information systems need to be updated and expanded. In order to guide this work, the District’s technology plan should be updated. As the technology plan is developed, projects will be identified for specific sites and for the District office. Since these technology components can be done as stand-alone projects, it is anticipated that they will be done as independent projects. Where they can be incorporated into modernization-type projects, some economies might be achieved. Note that the costs associated with technology infrastructure are above and beyond the project costs identified on the individual site project lists.

Physical Condition Assessment Grading Criteria and Results

Upon completion of the field assessments, a summary report for each site was developed to provide a brief overview of the site and the findings. The summary included grades for each major category assessed and an overall grade for the site.

Grading Methodology

The following grade indexes, like the Replacement Cost Index, are intended to provide a comparative condition of a given MBUSD campus when measured against another campus in the District. The grades noted are both an objective measurement of a facility’s condition and a subjective appraisal of a property’s condition as judged by the independent assessment team from DLR Group and its specialists using pre-established criteria. DLR Group’s assessors assigned a grade to each of the main building assessment categories — Site Improvements; Architecture & Structure; Building Systems; Interior Spaces; Furnishings, Fixtures & Equipment; and Other Structures & Improvements — using the following descriptions as an aid to assign an appropriate grade to the aggregate systems within each assessment category:

- **A** - New or near new condition of all components of systems.
- **B** - Generally good condition with minor corrective actions required for some systems. Corrective actions are required but not urgent.
- **C** - Fair condition with some corrective actions required for some systems. Some urgency is involved for corrective actions.
- **D** - The majority of systems are in poor condition and require corrective actions. Most corrective actions require immediate attention.
- **F** - Virtually all systems are broken or inoperative. Most cannot be repaired easily. If repairable, costs to do so are prohibitive or exceed full replacement cost.

Letter grades for each major category are given a numeric equivalent grade based on grade points typically assigned to letter grades (i.e. 4.00 points for an A, 3.00 points for a B, etc.). The numeric grade average of the main assessment categories are then calculated to arrive at an overall Grade Point Average for the campus which is translated into an overall letter grade. The letter grades assigned are based upon the following grading scale:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Numerical Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.00 to 3.75</td>
</tr>
<tr>
<td>A-</td>
<td>3.50 to 3.74</td>
</tr>
<tr>
<td>A+</td>
<td>3.25 to 3.49</td>
</tr>
<tr>
<td>B</td>
<td>2.75 to 2.50</td>
</tr>
<tr>
<td>B-</td>
<td>2.50 to 2.34</td>
</tr>
<tr>
<td>B+</td>
<td>2.25 to 2.49</td>
</tr>
<tr>
<td>C</td>
<td>2.00 to 1.75</td>
</tr>
<tr>
<td>C-</td>
<td>1.75 to 1.50</td>
</tr>
<tr>
<td>C+</td>
<td>1.50 to 1.25</td>
</tr>
<tr>
<td>D</td>
<td>1.25 to 0.75</td>
</tr>
<tr>
<td>F</td>
<td>0.75 to 0.00</td>
</tr>
</tbody>
</table>

Where the systems have been identified as needing immediate attention, the repairs or maintenance may not be addressed within the general project set-aside funds. Recommendations: For each campus, the District should develop an “ADA Transition Plan” to address short- and long-term accessibility improvements (such as ramps, elevators and parking). Unresolved items in the ADA Transition Plan for each campus must be addressed in accordance with current accessibility standards and codes as buildings and site elements undergo modernizations and other alterations. New projects identified within the Master Plan will include accessibility work as it relates to the scope of the particular project and the associated path of travel to parking areas, public ways, restrooms and other accessible elements and locations on each site.
Overall Site Grading

The Overall Site Grade was determined based on an average of category grades and is summarized as follows for each site:

<table>
<thead>
<tr>
<th>School Sites</th>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan Beach Preschool</td>
<td>2.07</td>
<td>C</td>
</tr>
<tr>
<td>Grand View Elementary School</td>
<td>2.25</td>
<td>C+</td>
</tr>
<tr>
<td>Ladera Elementary School</td>
<td>1.50</td>
<td>D+</td>
</tr>
<tr>
<td>Meadows Elementary School</td>
<td>2.52</td>
<td>B–</td>
</tr>
<tr>
<td>Pacific Elementary School</td>
<td>2.38</td>
<td>C</td>
</tr>
<tr>
<td>Pennekamp Elementary School</td>
<td>2.50</td>
<td>B–</td>
</tr>
<tr>
<td>Robinson Elementary School</td>
<td>2.25</td>
<td>C</td>
</tr>
<tr>
<td>Manhattan Beach Middle School</td>
<td>2.76</td>
<td>B</td>
</tr>
<tr>
<td>Mira Costa High School</td>
<td>2.53</td>
<td>B–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other District Facilities</th>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Center/District Offices</td>
<td>2.91</td>
<td>B</td>
</tr>
<tr>
<td>Maintenance & Operations</td>
<td>2.06</td>
<td>C</td>
</tr>
</tbody>
</table>

Refer to Chapter 5 for detailed assessments and grading of each site.
CHAPTER 3
COMMUNITY OUTREACH
Introduction

The Manhattan Beach Unified School District had a clear vision and goal to be as inclusive and transparent as possible when they embarked upon the development of this Long Range Facilities Master Plan. During February and March of 2015, a total of eight community forums were held, one at each school site. The intent of the community forums was to inform the community of the District’s endeavor in defining the needs of their learners for the next generation of learning environments, and to gather information and input from the community to better understand the ‘needs’ and the ‘wants’ at the various school sites. These forums provided a valuable source of information which helped develop the school site master plans and the District’s Educational Specifications and served as a conduit for an open dialogue between the District and the community.
Process Overview

The community outreach process began with community forums at eight District schools. Invitations were sent to the attendance areas of each school, published in the school newsletters, posted on the school’s website, and featured on the school’s digital signs. Personal invitations were mailed to residents in the surrounding neighborhoods. The goal was to reach as many community members as possible and invite them to participate in crafting the vision for the future.

The District established ‘site committees’ comprised of the site principal, office staff, primary and intermediate teachers, and PTA representatives for each school in order to gain a thorough understanding of each campus. Approximately one week prior to the community forums, DLR Group met with the school’s principal to discuss issues that they may have. A common understanding of the master planning process was gained, and the format and goals of the site committee meetings were established. The school’s principal assisted DLR Group in leading the site committee meetings.

The site committee meetings, organized as working sessions, allowed each participant to voice their concerns on any aspect of their campuses. More importantly, these site committee meetings began to establish the vision for what would eventually become the Educational Specifications for the District and the future master plan for each specific campus.

An on-line survey was placed on the District Website for further reach and input from the student, staff, and community to solicit responses to the master planning efforts.
COMMUNITY OUTREACH

Manhattan Beach Preschool

Site Committee Members:
Kim Johnson, Director
Raul Montoya, Operations
Lauren Smith, Teacher
Marilyn Smith, Teacher
Christine Tasto, Parent

Forum Attendees
Date: March 3, 2015
Brett Hobza, DLR Group
Karen MacIntyre, DLR Group
Nancy Martinez, DLR Group
Karen Komatinsky, MBUSD Board Member
Ellen Rosenberg, MBUSD Board Vice President
Dr. Mike Matthews, MBUSD Superintendent
Dr. Dawnalyn Murakawa-Leopard, MBUSD Board Asst. Supt.
Kim Johnson, Director
Angela Bazos, Teacher
Jane Gervais, Teacher
Deborah Grimes, Parent
Kenneth Mobley, Operations Manager
Margaret Nestbit, Parent
Lauren Smith, Teacher
Martyn Smith, Teacher
Christine Tasto, Parent
Chelsea Zielin, Parent

Grand View Elementary School

Site Committee Members:
Rhonda Steinberg, Principal
Heather deRosso, Parent
Rachel Disser, Parent, PTA President
Scott Holcomb, Parent
Jill Lamkin, Parent
Kathy Poje, Office Manager

Forum Attendees
Date: February 3, 2015
Brett Hobza, DLR Group
Kevin Fleming, DLR Group
Virginia Marquardt, DLR Group
Patti Ashton, DLR Group
Nancy Martinez, DLR Group
Bill Fourmiel, MBUSD Board President
Ellen Rosenberg, MBUSD Board Vice President
Jennifer Cochran, MBUSD Board Clerk
Christine Cronin Hurst, MBUSD Board Member
Karen Komatinsky, MBUSD Board Member
Dr. Mike Matthews, MBUSD Superintendent
Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
Katherine Stopp, Principal
Tim Champ, Parent
Cynthia Hedges, Parent
Nancy Vestenberg, Parent
Heather Kim, Parent
Michelle Legaspi, Teacher
Giovanni Luis, Parent
Sofia Rodriguez Luis, Parent
Miho Manabe, Neighbor
Gabriela Mejia, Parent
Becky McCalla, PTA President
Joanne Michael, Teacher
Cynthia Mistein, Parent
Gretchen Renshaw, Teacher
Heidi Sinivay, Library Specialist
Charles Southey, Parent
Vicki Tyler, Parent
Bea Zimbalist, Parent

Meadows Elementary School

Site Committee Members
Dr. Katherine Whitaker Stopp, Principal
Teri Allen, Office Staff
Michelle Legaspi, Teacher
Boddy McCalla, PTA President
Jenni Tucker, PTA Vice President
Karla Yates, Teacher

Forum Attendees
Date: March 5, 2015
Kevin Fleming, DLR Group
Patti Ashton, DLR Group
Melissa Klekner, DLR Group
Ellen Rosenberg, MBUSD Board Vice President
Karen Komatinsky, MBUSD Board Member
Dr. Mike Matthews, MBUSD Superintendent
Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
Katherine Stopp, Principal
Tim Champ, Parent
Cynthia Hedges, Parent
Nancy Vestenberg, Parent
Heather Kim, Parent
Michelle Legaspi, Teacher
Giovanni Luis, Parent
Sofia Rodriguez Luis, Parent
Miho Manabe, Neighbor
Gabriela Mejia, Parent
Becky McCalla, PTA President
Joanne Michael, Teacher
Cynthia Mistein, Parent

Pacific Elementary School

Site Committee Members:
Kim Linz, Principal
Rhonda Becker, Teacher
Shannon Nicholson, PTA Co-President
Shirley Rickard, Office Manager
Jeri Vick, PTA Co-President
Karen Komatinsky, MBUSD Board Member
Melissa Klekner, DLR Group
Ellen Rosenberg, MBUSD Board Vice President
Karen Komatinsky, MBUSD Board Member
Dr. Mike Matthews, MBUSD Superintendent
Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
Kim Linz, Principal
Rhonda Becker, Teacher
Tim Champ, Parent
Abbey Ehman, Parent
Famaz Flechner, Parent, Executive Director of MBEF
Debbie Gopen, Parent
Erin Grady, Parent
Biggita Kistock, Parent
Kate Malik, Parent
Hava Manasse, Parent, Director of Development and Strategic Partnerships of MBEF
Shirley Rickard, Office Manager
Alison Santa Ana, PTA Vice President of Operations
Jeri Vick, PTA Co-President
Carrie Welsh, Parent

Vista Drive Community Meeting
Date: June 1, 2015

COMMUNITY OUTREACH
Robinson Elementary School

Site Committee Members:
- Nancy Doyle, Principal
- Debbie Dreiling, Teacher
- Richard Gaines, Day Custodian
- Kim Holz, Teacher
- Jacki Masciel, Teacher

Forum Attendees
Date: February 24, 2015
Attendees:
- Virginia Marquardt, DLR Group
- Michael Ellars, DLR Group
- Melissa Klekner, DLR Group
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Carolyn Seaton, MBUSD Executive Director of Human Resources
- Nancy Doyle, Principal
- Monica Bolfse, VP Volunteers
- Cathy Brocko, Parent
- John Dargan, Parent
- Katie David, Parent
- Debbie Dreiling, Teacher
- Wendy Finster, Parent
- Claire Flynn, Parent, PTA Asst. Treasurer
- Deidre Gurney, Parent
- Andrea Hynes, Parent, PTA Co-President
- Jenber Linger, Parent
- Christy Phillips, Operations
- Lily Phillips, Parent, PTA Financial Secretary
- Dora Seiffert, Parent, PTA Co-President

Manhattan Beach Middle School

Site Committee Members
- John Jackson, Principal
- Karina Genger, Assistant Principal
- Joanne Arrasmith, Teacher
- Cassidy Baker, Teacher
- Max Haber, Student
- Denise Haslop, Teacher
- Helen Kawamoto, Office Staff
- David Levy, Teacher
- Rebecca Rawson, Student
- Rachel Thomas, Teacher
- Ann Marie Whitney, PTA President

Forum Attendees
Date: February 10, 2015
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

Mira Costa High School

Site Committee Members
- Ben Dale, Principal
- Jim Beaumont, Teacher
- Shawn Chen, Teacher
- Tim Cooper, Athletic Trainer
- Sandi Gleason, PTSA President
- Heather Hoffman, Principal’s secretary

Forum Attendees
Date: March 12, 2015
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Michael Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- David Levy, Teacher
- Rebecca Rawson, Student
- Rachel Thomas, Teacher
- Ann Marie Whitney, PTA President

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015

Forum Attendees
Attendees:
- Brett Hobza, DLR Group
- Virginia Marquardt, DLR Group
- Nancy Martinez, DLR Group
- Ellen Rosenberg, MBUSD Board Vice President
- Karen Komatinsky, MBUSD Board Member
- Dr. Mike Matthews, MBUSD Superintendent
- Dr. Dawnalyn Murakawa-Leopard, MBUSD Asst. Supt.
- Dr. Ben Dale, Principal
- Caprina Benson, Student
- Rita Benson, Dance Team
- Jennifer Cochran
- Patti Duong
- Monique Ehsan

18th Street Community Meeting
Date: May 26, 2015
The Community Forums

Each community forum began with Dr. Michael Matthews defining the Board of Education’s vision for the future of the District, which set the tone for the workshops to craft the school’s vision. DLR Group explained the Master Planning process and how the elements of the process fit together. This process established the priorities of the master plans.

The community forum attendees were organized into smaller participation groups with a representative from the site committee acting as the forum facilitator. A 45-minute ‘brainstorming’ session was conducted where the ideas, concerns, and visions brought up were documented and discussed. Each team presented their findings to the entire forum at the close of the brainstorming session. At the conclusion, an exercise was performed where each forum member was asked to place a sticker on five of the issues they individually deemed most important. As the community forums drew to a close, note cards were given to each attendee, and they were invited to write any additional issues or visions they may have that did not materialize in the group sessions. All of this information was then compiled with the site committee’s input to help establish the priorities at each school site.

A second site committee meeting was held at each campus following the community forums so that a consensus could be reached on the priorities for that campus. The priorities for each campus are listed in the following pages. DLR Group also utilized these second meetings to review the proposed campus master plans and the District-wide Educational Specifications in progress.
Manhattan Beach Preschool

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Multi-purpose room needed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Security issues - planters and trees are issues</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Electrical capabilities at shade structures</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Technology in classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical system upgrades - low capacity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Parking too limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portables have water damage</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need shaded playfields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long waiting list - expand campus to accommodate list</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wood stairs at lower level are rotted out</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand View Elementary School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cafeteria too small</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lighting for night activities / safety & security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>New tables/benches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No internet when rains / technology infrastructure</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Major plumbing problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking & Drop Off needs expanded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portables / termite problems</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Playgrounds - turf / ponding</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Need a music classroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthquake / Safety / Ladera site</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meadows Elementary School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>New multi-purpose room/Auditorium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too many access/entry points on campus/security issues</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amphitheater/Outdoor learning spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st-Century learning spaces/collaborative spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modernization of existing facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick up and drop off do not function well</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portable classrooms</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor play areas improvements</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pacific Elementary School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need large multi-purpose room/auditorium for large gathering space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security in general; some areas can’t be gated</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amphitheater is needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible classrooms for upper grades needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sliding doors need repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick up / drop off needs expanded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need restrooms on lower fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need additional kindergarten rooms if full day is implemented</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pennekamp Elementary School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose room not large enough for entire campus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fencing is needed along front of campus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Outdoor amphitheater is needed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Connecting classrooms/shared spaces</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sliding doors don’t work</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Not enough parking</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 portables need to be removed & replaced with permanent classrooms to make quad area</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Drinking fountains are needed in Extended Day Program area</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional restrooms needed in lower section of campus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Manhattan Beach Middle School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorium too small to accommodate entire campus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reconfiguration of front office to heighten security</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor spaces on 2nd level awkward and not used</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STE(A)M lab is needed</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop off by baseball fields is dangerous/design new drop off</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Design better path to Begg Pool</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool too far away</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional classrooms needed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Robinson Elementary School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two story multi-purpose room is needed cafeteria is too small</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fencing / Security - campus is completely open</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Need larger outdoor gathering space / amphitheater</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STE(A)M room (computer lab obsolete)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student toilets need refurbished</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Limited parking / traffic flow</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Day Program housed in portable. Need adequate space for this program</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage issues</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration building too small / not functional</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Mira Costa High School

<table>
<thead>
<tr>
<th>Issues/Wants</th>
<th>Site Walk</th>
<th>Site Committee</th>
<th>Community Forum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace main and small gym with 3-story gym</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Replace two English buildings and Library with 2-story building</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cafeteria building needs updating</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under utilized wood shop building - large square footage</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Studies building - no HVAC, space issues</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdated fencing - mixed types - fencing policy</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace pink cinderblock retaining walls throughout campus</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardscape and interiors needs updating</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food service “pods” scattered throughout campus</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General security - entrances to campus</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Online Surveys

An on-line survey was placed on the District Website for further reach and input from the student, staff, and community to solicit responses to the master planning efforts. The survey asked the following questions:

1. Please describe what you like best about your school.

2. What do you think needs to be improved about the buildings, yards, fields, etc.?

3. What is most important to you about your school’s buildings, yards, fields, etc.?

The survey produced hundreds of responses and the results are summarized as follows:
Manhattan Beach Preschool

<table>
<thead>
<tr>
<th>MB Preschool Priority Descriptions</th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meadows Elementary School

<table>
<thead>
<tr>
<th>Meadows Priority Descriptions</th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Campus Security</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand View Elementary School

<table>
<thead>
<tr>
<th>Grand View Priority Descriptions</th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Additional program space</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Keep Montessori school</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pacific Elementary School

<table>
<thead>
<tr>
<th>Pacific Priority Descriptions</th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Campus Security</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pennekamp Elementary School

Pennekamp Priority Descriptions

<table>
<thead>
<tr>
<th></th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td>21st Century learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Online Survey Results

Manhattan Beach Middle School

Middle School Priority Descriptions

<table>
<thead>
<tr>
<th></th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>22</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Campus Security</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td>21st Century learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td>127</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>13</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>101</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Congestion on stairs</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New performing arts center</td>
<td>46</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Online Survey Results

Robinson Elementary School

Robinson Priority Descriptions

<table>
<thead>
<tr>
<th></th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Online Survey Results

Mira Costa High School

High School Priority Descriptions

<table>
<thead>
<tr>
<th></th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Additional program space/Gym</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>New Gymnasium</td>
<td>15</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Online Survey Results
District Office

District Office Priority Descriptions

<table>
<thead>
<tr>
<th>Priority Description</th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintenance & Operations

Maintenance & Operations Priority Descriptions

<table>
<thead>
<tr>
<th>Priority Description</th>
<th>Student Surveys</th>
<th>Community Surveys</th>
<th>Staff Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>New MPR/Covered eating areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor teaching spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modernization/HVAC</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Parking lots/student drop off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove portables/new classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade playfields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional program space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our schools must reflect our community.

Need comfortable outdoor learning space: “Think beyond the picnic table – pod chairs, open benches, etc.”

Campus safety is a priority.

Imperative that we incorporate infrastructure to support technology.

Understanding that this is a 10 year process; what is feasible in the next 2-5 years?

I just can’t say enough about how excited I am about an expanded maker space/STEM area.

Need large multipurpose rooms where the school community can gather!

We have award winning programs and our facilities need to be tech advanced.

Project based learning spaces, flexible to accommodate different programming.

Community Forums keep us involved and heard, and thank you!

We have award winning programs and our facilities need to be tech advanced.

We have award winning programs and our facilities need to be tech advanced.
CHAPTER 4
EDUCATIONAL SPECIFICATIONS
Educational Specifications

Purpose of Educational Specifications

Introduction:
Creating a responsive school environment isn’t rigidly defined by square footage, a construction budget, or a design aesthetic. More importantly, it’s about establishing a thoughtful connection between learning and educational facilities. This document is intended to be used to achieve the educational, operational, administrative, and functional goals of the Manhattan Beach Unified School District.

Whether building new facilities or modernizing and reconfiguring existing structures, the educational facility should be agile and flexible enough to fulfill the current programmatic requirements of the District, while being easily adaptable to changes in the educational, social, economic, and political landscape and the effects these factors have on learning. With a concentration on the 21st-century learning environment, MBUSD facilities should support the concept of a student-centered learning environment and the efforts of the District to ensure that every student succeeds.

These guidelines are not intended to restrict the efficient design of school buildings and campuses. Flexibility to allow for minor deviations in spatial requirements is expected. Flexibility is essential to good design, but caution should be exercised to ensure that the educational programs are not compromised.

<table>
<thead>
<tr>
<th>LC</th>
<th>Learner Centered</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Nurturing the Whole Child</td>
</tr>
<tr>
<td>CP</td>
<td>Community Partner</td>
</tr>
<tr>
<td>AM</td>
<td>Aesthetics Matter</td>
</tr>
<tr>
<td>T</td>
<td>Leverage Technology</td>
</tr>
<tr>
<td>S</td>
<td>Sustainability</td>
</tr>
</tbody>
</table>

Learner Centered
We believe that learner centered education must provide safe, engaging and challenging environments that focus on inquiry and problem solving, accommodating various approaches to individualized and collaborative learning. They should foster innovation, persistence and curiosity, inspiring students to be lifelong learners who contribute responsibly to their community and the world. Our schools should offer a variety of gathering spaces and learning opportunities, both indoor and outdoor, to display and celebrate students’ work and achievements.

Nurturing the Whole Child
We believe in creating a comprehensive educational experience that reflects the critical importance of and interrelationship among all disciplines, including athletics, foreign language, language arts, math, science, social science, and the visual and performing arts. Our schools must reflect the importance of providing learners with a variety of academic, artistic, and athletic performance experiences to facilitate an understanding of the synergies between areas of study.

Community Partner
We believe we are partners in upholding the high quality of the Manhattan Beach community. We benefit from the tremendous support of our community members and, therefore, our campuses must continue to be community centers as much as centers for learning. With this commitment comes the responsibility of campus design to find a balance between openness and safety and security.

Aesthetics Matter
We believe that through cost-conscious design we must convey the high value we put in education to our learners, our staff, and the greater community while respecting historic architectural character. Whether an educator, learner, or neighbor, all need to feel a sense of dignity and ownership of their surroundings that inspires imagination and exploration. Safety and security measures will be integrated into the campus design maintaining a welcoming aesthetic experience.

Leverage Technology
We believe our learning spaces must remain relevant by leveraging technology to allow our learning environments to adapt, evolve, and grow as learning strategies change over time. Our schools must facilitate learning that can take place anywhere, at any time, using various media and devices. Technology connects our learners to global knowledge beyond the learning space, and provides academic equity and parity for all learners.

Sustainability
We believe that our schools must be models of sustainability and energy efficiency to be good stewards of global resources and taxpayer dollars, encouraging lifelong awareness and ecologically responsible practices for our learners. Design must consider conservation of resources and durability and maintainability of materials and systems.

A Vision for the Educational Environment

Following the Guiding Principles

What are the needs of a 21st-Century learner?
In March of 2015, Manhattan Beach Unified School District invited “Innovators in Education” from varying disciplines to help craft the Educational Specifications to support their vision of how learning takes place in their current and future facilities. During three, 2-hour visioning sessions focusing on the various grade configurations of the District’s educational team, the essential qualities of 21st-century learners and the built environment were identified. The Guiding Principles represent the vision and these Specifications are intended to pave the road to a successful learning experience for all of Manhattan Beach Unified School District’s students in the decade to come.

The following chapters explain the importance of the various aspects of the learning environment that are deemed critical for students’ success. As the paradigm of learning continues to shift, the agility of the learning spaces must provide the necessary flexibility to accommodate change and creativity. Whether it’s the ability of a space to be transformed from a group environment to a project-based learning environment or to foster group or individual learning, these learning spaces for 21st-century learning require a varied and multi-functional approach. Each of these chapters is identified with the Guiding Principle that they most align with.
Learning on Your Own Path

Fostering lifelong learners is the goal for every student, yet the way we get there is different for every child. Not every student learns in the same way, and we must create environments for all learners. Manhattan Beach Unified School District supports a variety of learning styles by providing each student with multiple methods of exploration, participation, and expression. Students stretch themselves in their dominant modes while being exposed to and developing non-dominant modes simultaneously. This begs the need for adaptive learning styles.

The classroom is opening up. The self-contained room has become part of a larger series of spaces. Linked classrooms, group spaces and shared activity areas join to form a fluid, cohesive unit. In addition to standard instruction, students can work quietly by themselves or in groups of varying size. Shared activity and exploration spaces provide opportunities for long-term projects. Working with instructional assistants in the expanded classroom enables instructors to deal effectively with all types of learners in the same agile spaces.

Learner Centered

We believe that learner centered education must provide safe, engaging and challenging environments that focus on inquiry and problem solving, accommodating various approaches to individualized and collaborative learning. They should foster innovation, persistence and curiosity, inspiring students to be lifelong learners who contribute responsibly to their community and the world. Our schools should offer a variety of gathering spaces and learning opportunities, both indoor and outdoor, to display and celebrate students’ work and achievements.

The ideal spot for reading

It’s different for every student.

Open. Connected.

“The noise helps me concentrate. I lose my mind if it’s too quiet.”

“My best friend and I like the bench near the front.”

“The rock is a perfect chair.”

Enclosed. Connected.

“When we do well, the teacher lets us read outside of class.”

“I like to read and watch other kids play.”

Enclosed. Intimate.

“Reading in the window is like being in a tree.”

“Caves are the best.”

“There’s a soft bench in my classroom where I read every day. It reminds me of my bedroom.”
Learning is Active and Interdisciplinary

Inquiry-based learning environment portends that we learn best when subject materials have a connection to one another and, for instance, relevance to our own lives. By pairing art with science, students work with different types of thinking, and they learn to move fluidly between them. Working in one mode not only informs the other, it makes creativity possible. Students learn to see the world from multiple points of view. Students are able to make discoveries when presented with the right tools. They learn to form their own thoughts, feelings, and impressions in response to the tools at hand. When students are given a choice, the work becomes more meaningful, and the learning becomes more robust.

The learning spaces that Manhattan Beach Unified School District are proposing are intended to foster this interaction between instructors and subject matter. Included at each elementary school campus is an "Innovation Suite" which combines a science classroom, a maker space and a technology-rich art classroom, all interconnected where students come to explore ideas they are crafting related to subjects that are being taught in the classroom. Developing a quizzical and curious nature about education all combine to make this process relevant to our students' education as well as our lifelong learning curve.

NC
Nurturing the Whole Child

We believe in creating a comprehensive educational experience that reflects the critical importance of and interrelationship among all disciplines, including athletics, foreign language, language arts, math, science, social science, and the visual and performing arts. Our schools must reflect the importance of providing learners with a variety of academic, artistic, and athletic performance experiences to facilitate an understanding of the synergies between areas of study.
Learning is Safe and Welcoming

Fostering a safe and secure learning environment requires new thinking about the relationship between school and the public at large. By not being allowed inside the school campus, it is difficult for community members to understand what happens there. They cannot make a personal connection. By welcoming the community into our schools and making the inner-workings transparent, community support is strengthened and encouraged. Since vast amounts of our education takes place outside of the school environment within our communities, it is imperative that our schools remain inviting to all.

The Manhattan Unified School District facilitates a joint-use agreement with the City of Manhattan Beach to share the District’s play fields when they are not being utilized for school needs. These areas are often the largest open spaces within the neighborhood and are utilized for a host of reasons. This interaction with the community should be viewed as a great opportunity to illustrate our students’ success and learning methods with our parents and neighbors. Pride in the community can play a key role in making our students’ learning environments safe and secure.

Address the four zones

1 Up to the curb
For example, consider the zone up to the curb. In order to develop strategies appropriate to this zone, you must first understand traffic patterns, access points and safe walking routes.

2 Curb to the building
Site perimeter security includes landscaping, lighting, walks, service areas, parking, public zones, private zones, student use areas, busing, signage, cameras, out buildings, overhangs and covered areas.

3 Building exterior
Building perimeter security includes doors, windows, signage, hardware, security entry devices, cameras, roof access, and vandalism potentials.

4 Building interior
Building interior security includes vestibules, hardware, transparency, sightlines, areas of refuge, classroom layout, vertical circulation, hard and soft zoning, cameras, security devices, PA and phone systems, restroom configuration and placement.

Specifics
- Walks, lighting, drives, fences, gates, landscaping, signage

Site emergency zones
- Landscaping, lighting, walks, service areas, parking, public zones, private zones, student use areas, busing, signage, cameras, out buildings, overhangs and covered areas

Building perimeter security
- Doors, windows, signage, hardware, security entry devices, cameras, roof access, vandalism potentials, line of sight, lighting

Security devices
- Vestibules, hardware, transparency, line of sight, areas of refuge, classroom layout, vertical circulation, hard and soft zoning, cameras, security entry devices, PA / phone systems, restroom configurations and placement

Welcome yet Secure – Sharing with the Community

The neighborhoods surrounding the Manhattan Beach schools benefit from a shared-use agreement with the Manhattan Beach Unified School District allowing access to school play areas after hours and on weekends. The security zones require special attention for a clear separation between the street and the school campus buildings, as well as between the school buildings, the play fields and the neighborhoods. The campuses want to extend a welcoming gesture toward the community but need added protections for District’s facilities and student areas that are not shared. All security features incorporated into a design need to be examined for the protection they provide and the message they deliver.

We believe we are partners in upholding the high quality of the Manhattan Beach community. We benefit from the tremendous support of our community members and, therefore, our campuses must continue to be community centers as much as centers for learning. With this commitment comes the responsibility of campus design to find a balance between openness and safety and security.
Learning is Inspiring

Colors, natural and artificial lighting, materials and student work form much of the sensory education that underlie the learning environment. Research tells us that the senses are the gateway to the mind, and through them, we develop our intellect, build memories, and construct meaning. This research also says that students retain, retrieve, and learn best within environments that are sensually rich. Because we engage the built environment through our senses, it has a profound impact on our psychological and physiological wellbeing. The built environment can either enhance or impair the learning environment.

The impact our schools have on our children is consequential. The quality of these environments directly informs our students of the importance our community places on education. Well-designed and maintained facilities assure us that the foundation for our future leaders are solidly grounded and fully supported.

Children need to be inspired by their environment

How do we inspire students with color?

Brain research tells us that the brain develops through seeing patterns and relationships. Seeing contrasts between colors is vital, such as contrasts between light and dark, saturated and muted, or warm and cool. Color also has the power to enhance mood and complement particular activities. In spaces that are used for focused work, rest, and contemplation, cool colors that are soothing enhance feelings of calmness and repose. Colors that are warm and bright stimulate activity, so they are best suited for play, fitness and other energetic spaces. Colors also communicate what activities are appropriate. Color can improve direction as well as demarcate territories, giving each learning suite a personalized identity. Consider how the culture of the community, site, and climate influence color; remember color preferences change for different student ages.

How do we inspire students with natural and artificial lighting?

Consider natural light and the effects it has on a space. Views of the outside world provide bright colors and full-spectrum lighting, yet glare ensures that blinds will stay closed, no matter how beautiful the views are. As much as they need light, students also need darkness and shadow. Natural light is neither consistent nor entirely predictable, and alone, it cannot satisfy the needs of the learning environment. Artificial lighting provides a range of qualities depending on light source, whether it is concentrated or diffused, temperature and shadows. Because every student learns differently, what qualities of artificial lighting are needed for the learning environment?

How do we inspire students with material?

Materials stimulate the senses in a variety of ways with finishes that range from smooth to rough, soft to hard, wet to dry, and transparent to opaque. Some materials are even fragrant; consider the range of smells between leather, mahogany and steel. They provide a number of ways for learning about the world. Some materials weather and change over time while others, like glass, maintain a more permanent state. We experience heat and cold through touch; steel feels colder than wood at the same temperature. Students learn how light and sounds behave through the patterns of different materials. Glossy materials reflect more light. When a student knocks on a surface, what sound does it make?

How do we inspire students with the display of their work?

Making 2D, 3D and digital artifacts is not only a form of thinking and communicating with others, it is a means of self-expression; for some it is their preferred way of working. Displaying student work enables students to track progress and personalize their environment. Students learn that there are multiple points of view. They learn to critique their own work, critique the work of their peers, accept criticism in return and develop internally-driven measures for success. Display teaches students their work matters to others, particularly with caring adults. The elementary years have a profound impact on students’ identity and their relationship to creativity. Ask a first grader, “Are you an artist?” Most, if not all say YES!; ask them again in five years; all but a few say no. We need to create environments that foster creativity.
Learning is Connected

Having to support a variety of learning styles has changed the way teachers work together. Instructors interact with instructional assistants, student teachers, special education experts and administrative counterparts. These associates often share the classroom, use shared learning spaces or work in collaborative areas. A teaming approach to instruction is one of the most effective ways educators are approaching the student-centric instructional model now encouraged by the adoption of the Common Core State Standards and the implementation of 21st-century learning principles. Teaming allows students to work with different personalities and instructional styles, providing additional opportunities for self-directed and small group learning.

Technology is one of the driving forces behind the success of the student-centric educational model. The ability to connect with one another and the educational community has allowed for a variety of teaching models to be implemented, from the ‘flipped classroom’ where the lectures are delivered outside the classroom time, to the hands-on homework being the focus of classroom instruction, and to the project-based learning environments allowing students to build their own education experience based on relevancy and collaboration through real-life problem solving. The ability for technology to bring expertise and cultures from around the globe into the classroom provides perspectives on topics and problems not available to learners just a generation ago. This connectivity allows the 21st-century generation of learners a far more relevant approach to how their education and expectations of society align and reinforce one another.

Fluid connections between spaces

Make the classroom adaptable. Furnishings and partitions support dramatically different spatial uses.

Leverage Technology

We believe our learning spaces must remain relevant by leveraging technology to allow our learning environments to adapt, evolve, and grow as learning strategies change over time. Our schools must facilitate learning that can take place anywhere, at any time, using various media and devices. Technology connects our learners to global knowledge beyond the learning space, and provides academic equity and parity for all learners.

Open Self-directed learning

Students direct their own pace. Peers give support as needed. Teachers are available when a student gets stuck.

Contained Direct instruction

Teachers divide the class into groups and work individually.

Hybrid Project-based learning

Students work on an interdisciplinary project. Some research online while others collaborate in small groups.

Hybrid Team-teaching

A pair of teachers moderate a student debate while a third teacher instructs part of the class.

Make the classroom adaptable. Furnishings and partitions support dramatically different spatial uses.
Learning is Influenced by Nature

Nature should be a strong part of the learning environment. The outside spaces of the school site present the opportunity to be involved with our natural surroundings, and the opportunity to establish awareness and respect for the world around us.

Outdoor activity provides the optimal condition for children’s cognitive development. The Manhattan Beach Unified School District encourages this connection with outdoor learning spaces designed to enhance each classroom, as well as outdoor classrooms aligning with elements of the study of nature and our resources. One of the first recipients of the Green Ribbon School awards, the District has embraced sustainable measures as a necessary means to impart the importance of our natural resources and how one can protect them for our students.

Sustainability

We believe that our schools must be models of sustainability and energy efficiency to be good stewards of global resources and taxpayer dollars, encouraging lifelong awareness and ecologically responsible practices for our learners. Design must consider conservation of resources and durability and maintainability of materials and systems.

Engage the site’s natural assets

At Meadows Elementary School, mature trees scattered throughout the site creates spaces for children to enjoy the shade, protect them from the sun, and dream about the future.

Connect with nature from within

Students spend a significant amount of time indoors. At Pennekamp Elementary School, a campus garden allows students to physically connect with nature by harvesting fresh vegetables. Each campus master plan incorporates a campus garden for students to enjoy.

Provide immediate access to the outdoors

At each elementary school within the Manhattan Beach Unified School District, students have immediate access to the outdoors through much beloved sliding doors. Children move quickly outside and immediately transition from focused mode to active mode, expanding the teaching environment in each learning studio.

Water Management

Each campus within the Manhattan Beach Unified School District plans to utilize filtration and absorption techniques to capture and filter storm water. Pervious paving, bio swales and a storm water retention system will allow captured water to be used for irrigation purposes.

Rethinking the learning space

The classroom is shifting from a single space to a variety of smaller ones. Consider making some of the two- and five-person spaces non- or semi-conditioned. While unavailable on certain days, these spaces will be particularly sought after on temperate ones.

Use natural materials

Through touch, smell and patina, natural materials such as wood and stone engage the senses and provide an alternative means of understanding the natural world. When natural materials are compared to manufactured ones like steel and glass, students learn about material properties, including transparency, thermal conductance, responsible manufacturing and aging of materials.
Spatial Requirements & Relationships

With an expected minimum life span of 50 years, a school will inevitably undergo changes throughout its life. Change may be technological, spatial, or academic. The design of educational facilities must consider how a facility will change over time. This section of educational specifications contains detailed information about the major spaces or functional areas that should be provided in each elementary school. This section provides a detailed Spatial Program organized into 11 components based on an elementary school with an enrollment of 500-700 students. Each component is provided with an adjacency diagram and a general description and goals followed by individual data sheets for each room or space within that component.

The educational specification data sheets for each space contains the following information:

• The total net recommended area of the space which corresponds to the spatial program.
• The total number of occupants that will typically use the space.
• A brief description of the activities and uses of the space.
• The identification of support spaces needed to support the activity or use of the space, including any exterior areas.
• A description of the building system requirements needed for the space including mechanical, plumbing, electrical/lighting, and technology.
• Door and window recommendations for the space. A description of the amount of natural light, window coverings, transparency and security of the doors and windows is included.
• A description of the type and number of furnishings that will be used in the space. Any built-in equipment and cabinetry needed is described with approximate quantities.
• A description of any special considerations of the space including materials and finishes, ceiling height, acoustics, built-in instructional aids, aesthetics and flexibility of the space.

An overall campus adjacency diagram that illustrates the relationships of all elementary school components and subcomponents follows the educational specification data sheets.
Elementary and Preschool Spatial Program
Description and Goals

The administrative office suite will oversee and coordinate all activities at the school. The public reception/welcome center should be near the drop-off and front of the school. Since all campuses need to be secured, this is the only point of entry at the exterior perimeter for visitors. The public must enter here before being allowed on the campus. Visitors will then be permitted on campus through the student reception area.

The administrative offices should be located to allow visual supervision of vehicular traffic at the campus and the pedestrian traffic coming onto campus. It would be clear from the front of the school where the administration building is. Signage should be visible, readable and easy to understand. In existing buildings, the administration program is intended to reside in the space of three classrooms. To further enhance the “Learner Centered” environment, student work should be prominently displayed in the reception area and adjacent student gallery.
Space Types
Reception & Welcome Center

Activities & Uses
The Reception and Welcome Center is the first space everyone sees when coming to the campus. This space should feel welcoming and inviting. It’s a reception/waiting/seating area for students, parents or visitors awaiting appointments or needing information, referral, or directional assistance. Clerical and secretarial areas may be located to provide reception functions for both visitors and for students. The area also provides opportunity for exhibition of student work through the incorporation of a student gallery area. This also becomes the point of access for the campus’ secured perimeter where all visitors must check in before being allowed onto school grounds. Visitor parking area should be visually prominent at main campus entry and staff should have visual surveillance of visitor arrival.

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Lighting: per IES Lighting Handbook guidelines

Technology
• Digital display on wall for security camera monitoring
• Hardwired video outlet to permit receiving video transmission from on-campus distribution system to digital display at waiting area for campus announcements and/or scrolling security cameras
• Wireless access capable for most computer communications/applications

Doors & Windows
• Visibility from adjacent public entry area and reception to front of school
• Natural light desirable
• Skylights acceptable
• Window coverings as required for sun/glare control
• Ability to lock down doors

Furniture & Equipment
• Casual seating for 4-6 visitors in reception/waiting area
• Digital display
• Digital display wall-mount bracket

• Clock
• Tackable wall surfaces for display of student work
• Trophy display cases/shelving
• Reception counter (casework or modular) to facilitate receiving visitors yet provide privacy for clerk

Special Considerations
• Ceiling material: acoustic tile or gypsum board
• Ceiling height: 9’-0” min. A higher volume may be desired for display of student work
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile
• Colorful, inviting, public/student-friendly atmosphere

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality communications/applications
• Energy efficient lighting
• Use of recycled content in products
Space Types

Administration

Open Office

Activities & Uses

Directly adjacent to the reception counter, the open office will house administrative assistants, attendance clerks and clerks. Three staff workstations conduct various office and administrative activities and assist faculty, staff, students, and visitors.

The open office should have direct supervision to the reception/welcome center and the student reception/waiting area.

The health office should also be in close proximity for added supervision.

Support Spaces

Conference Room
Principal’s Office
Asst. Principal’s Office

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for general room & counter use
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Wireless access capable for most computer communications/applications
- Wired data outlets at copiers and printers

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control and privacy
- Skylights acceptable
- Windows for view into open office area
- Ability to lock down doors

Furniture & Equipment

- Administrative office workstations with file cabinets and lockable storage

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile, and/or carpet tile
- Clear Visual connection through the reception/welcome center to the front of the school and parking lot
- Clear visual connection from student waiting area to campus circulation or courtyard
- Close proximity to conference rooms
- Close proximity to Principal and Asst. Principals offices

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Principal’s Office

Activities & Uses
Office space to prepare materials and conduct administrative activities to include individual and small group informal and formal conferences and consultations with colleagues, staff, students, parents and community members.

Private phone calls, planning and computer input.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for general room & counter use
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Wired data outlet at office workstation for local area network connectivity
- Digital display on wall for security camera monitoring
- Hardwired video outlet to receive transmission from on-campus distribution system at digital display in office for campus announcements and/or scrolling security cameras
- Access to file server, printer and scanner
- Wireless access capable for most computer communications/applications

Doors & Windows
- Natural light desirable
- Sidewall or door for view into office area
- Window coverings as required for sunglare control and privacy
- Direct access to the exterior through second door for security
- Ability to lock down doors
- Windows for to exterior for view
- Ability to lock down doors

Furniture & Equipment
- Administrative office workstation including file cabinets and wardrobe closet; locable
- Credenza and bookcase
- Guest chairs
- Conference table with 6 chairs
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: carpet tile
- Provide secondary entry/exit pathway that does not pass through welcome/reception area
- Close proximity to conference room
- Close proximity to Admin open office
- Close proximity to Asst. Principal’s office

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Assistant Principal’s Office

Activities & Uses
Office space to prepare materials and conduct administrative activities to include individual and small group informal and formal conferences and consultations with colleagues, staff, students, parents, and community members.

Private phone calls, planning and computer input.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for general room & counter use
- Glare reducing lenses
- Lighting; per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Wired data outlet at office workstation for local area network connectivity
- Digital display on wall for security camera monitoring
- Hardwired video outlet to permit receiving video transmission from on-campus distribution system to digital display in office for campus announcements and/or scrolling security cameras
- Access to file server, printer and scanner
- Wireless access capable for most computer communications/applications

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun glare control and privacy
- Skylights acceptable
- Windows for view into open office area
- Ability to lock down doors

Furniture & Equipment
- Administrative office workstations including file cabinets and wardrobe closet; lockable
- Credenza and bookcase
- Guest chairs
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: carpet tile
- Close proximity to Principal’s office
- Close proximity to Admin Open Office
- Close proximity to Student Reception area

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Staff Room/ Work Room

Activities & Uses
A combination of staff lounge and workroom, staff will use this space for office supplies storage, printing, copy and mail distribution/delivery. Faculty and staff can collaborate with colleagues, take breaks, relax, dine and snack.

Size
600 sf

Occupants
Staff

User Groups
Staff

Support Spaces
Storage
Restrooms

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Room Exhaust in kitchenette area
- Fire alarm/suppression as required
- Outlets for general room & counter use
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Wireless access capable for most computer communications/applications
- Wired data outlets at copiers and printers
- Digital display wall-mount bracket
- Vending machines
- Clock
- Kitchenette base cabinets with counter work surface, adjustable shelving and hinged doors and drawers, countertop sink, and locks (verify locations)
- Wall cabinets with adjustable shelving and hinged doors above base cabinets, locks (verify locations)
- (1) 4’ x 8’ tackboard and markerboard
- Layout/work tables
- Digital display
- Misc. office equipment to include printers, scanners, fax and copy machines
- Mail slots for faculty and staff (verify if and size)
- Paper storage, shredder and cutter

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sunglare control and privacy
- Skylights acceptable
- Windows for view into open office area
- Ability to lock down doors

Furniture & Equipment
- Lounge seating
- Tables with chairs for lunch and team meeting
- Refrigerator
- Microwave oven
- Digital display
- Wall cabinets with adjustable shelving and hinged doors above base cabinets, locks (verify locations)
- (1) 4’ x 8’ tackboard and markerboard
- Layout/work tables
- Digital display

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile, and/or carpet tile

Sustainability
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces
- Storage
- Restrooms
Health Office/ Exam/ Cot Area

Size
200 sf

Occupants
Nurse Staff
1-3 student patients

User Groups
Students
Staff
Parents

Support Spaces
Toilet
Storage

Activities & Uses
Office space for school nurse. Administrative activities to include individual and small group conferences and consultations with colleagues, staff, students, and parents. Reception/waiting/seating area for students awaiting medical care or discharge. Cot area available for students to lay down, rest and receive examination. Vision and hearing testing and isolation.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for general room & counter use
- Clean, segregated power distribution with surge
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset at workstation, VoIP
- Wired data outlets at workstation for local area network connectivity
- Access to file server, printer and scanner
- Wireless access capable for most computer communication/ applications

Furniture & Equipment
- (1) administrative office workstation
- (1-2) guest chairs
- 4-drawer file cabinets for records storage
- Medications storage cabinet
- Examination table and equipment
- (2) cots
- Curtain system to subdivide/ isolate cot areas
- Clock

Doors & Windows
- Natural light desirable
- Window desirable for supervision of reception area
- Window coverings as required

Flooring
- Base cabinets with drawers, adjustable shelves and hinged doors, drawers, countertop sink, work station
- Overhead cabinets with adjustable shelving and hinged doors
- (1) 4’ x 4’ tackboard

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile

- Close proximity to admin/open office area
- Provide 20’0” clear area within space or adjacent to area for vision testing

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces
- Toilet
- Storage

Space Types

Health Office/ Exam/ Cot Area

Size
200 sf

Occupants
Nurse Staff
1-3 student patients

User Groups
Students
Staff
Parents

Support Spaces
Toilet
Storage

Activities & Uses
Office space for school nurse. Administrative activities to include individual and small group conferences and consultations with colleagues, staff, students, and parents. Reception/waiting/seating area for students awaiting medical care or discharge. Cot area available for students to lay down, rest and receive examination. Vision and hearing testing and isolation.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for general room & counter use
- Clean, segregated power distribution with surge
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset at workstation, VoIP
- Wired data outlets at workstation for local area network connectivity
- Access to file server, printer and scanner
- Wireless access capable for most computer communication/ applications

Furniture & Equipment
- (1) administrative office workstation
- (1-2) guest chairs
- 4-drawer file cabinets for records storage
- Medications storage cabinet
- Examination table and equipment
- (2) cots
- Curtain system to subdivide/ isolate cot areas
- Clock

Doors & Windows
- Natural light desirable
- Window desirable for supervision of reception area
- Window coverings as required

Flooring
- Base cabinets with drawers, adjustable shelves and hinged doors, drawers, countertop sink, work station
- Overhead cabinets with adjustable shelving and hinged doors
- (1) 4’ x 4’ tackboard

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile

- Close proximity to admin/open office area
- Provide 20’0” clear area within space or adjacent to area for vision testing

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Conference Room

Activities & Uses
Whole and small group meetings/conferences for a variety of informal and formal student, faculty, and staff uses.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Clock
- (1) 4’ x 8’ markerboard of full marker wall
- (1) 4’ x 4’ tackboard

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Direct access to Admin open office
- Direct access to Principal’s office
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Size
200 sf

Occupants
Staff

User Groups
Staff

Support Spaces
Admin Open Office
Principal’s Office
Space Types

Student Gallery

Activities & Uses
An area dedicated for displaying student projects, including a large-scale digital monitor.

Size
120 sf

Occupants
Varies

User Groups
Varies

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Preschool Learning Studio

Description and Goals

This highly collaborative configuration depends on staff with redundant visual supervision. Transparency and connections between learning studios to the collaborative area is important along with convenient adjacencies to other amenities such as restrooms, outdoor space and student drop-off area.

Preschool Instructional Community

<table>
<thead>
<tr>
<th></th>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom/Studio</td>
<td>4</td>
<td>960</td>
<td>3,840</td>
</tr>
<tr>
<td>Small Group Collaboration</td>
<td>2</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Outdoor Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>4,160</td>
</tr>
</tbody>
</table>

*Number of classrooms/studios vary by site.
*Transitional kindergarten similar.
Space Types

Preschool Classroom/ Studio

Activities & Uses
Space should support an interactive learning environment with elements associated with play. Activities will vary greatly from lecture, art, music, and nap time. The studios should provide a variety of floor and wall surfaces. A direct connection and extension of the studio is needed to outdoor learning and play areas, restrooms, and instructor collaboration areas.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Occupants
1 Instructor
24 Students

User Groups
Students
Staff

Support Spaces
Teacher Collaboration
Toilets
Covered Area
Outdoor Play Area

Technology
- Telephone/Intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system all digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Data outlets for local area network connectivity for instructor workstation and 4-6 student workstations

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

OUTDOOR PLAY

Furniture & Equipment
- HiDef digital display
- Digital display wall mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Direct connection to adjacent studio via operable partitions or overhead doors

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Size
1,130 sf

Materials
- Floor material: vinyl composition tile or carpet tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Ceiling material: acoustic ceiling tile
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space should support an interactive learning environment with elements associated with play. Activities will vary greatly from lecture, art, music, and nap time. The studios should provide a variety of floor and wall surfaces. A direct connection and extension of the studio is needed to outdoor learning and play areas, restrooms, and instructor collaboration areas.
Space Types

Kindergarten Instructional Community

Description and Goals

The Manhattan Beach Unified School District is planning to provide full-day kindergarten in lieu of the current half-day sessions. This change will result in the need for additional kindergarten rooms. Each of the Kindergarten Instructional Communities will also include one transitional kindergarten instructional space. The Kindergarten Instructional Community should be configured to allow this grade level to be kept together as an autonomous unit within the larger campus structure with restrooms, outdoor learning environments and play areas easily accessible to all community learning studios.

The Kindergarten Instructional Community should promote instructor collaboration and help advance the feeling of a professional learning environment among the community. Ideally, the Kindergarten Instructional Community is located with easy access to a parent drop-off/pick-up area which is separate from the school’s main drop-off/pick-up area.

<table>
<thead>
<tr>
<th>Kindergarten Instructional Community</th>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom/Studio</td>
<td>4</td>
<td>1,130</td>
<td>4,520</td>
</tr>
<tr>
<td>Teacher Collaboration</td>
<td>2</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Toilets</td>
<td>8</td>
<td>60</td>
<td>480</td>
</tr>
<tr>
<td>Outdoor Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Covered Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>5,400</td>
</tr>
</tbody>
</table>

*Number of classrooms/studios vary by site.
*Transitional kindergarten similar.
Space Types

Kindergarten-TK Classroom/Studio

Activities & Uses
Space should support an interactive learning environment with elements associated with play. Activities will vary greatly from lecture, art, music, and nap time. The studios should provide a variety of floor and wall surfaces. A direct connection and extension of the studio is needed to outdoor learning and play areas, restrooms, and instructor collaboration areas.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines
- Windows mirroring
- Multiple source input for digital display via iPad, Mac and Windows mirroring
- Natural daylighting into the learning area

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Clock

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Adjacent to outdoor play area
- Adjacent to appropriate-sized toilets

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Teacher Collaboration

<table>
<thead>
<tr>
<th>Size</th>
<th>200 sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>Instructors</td>
</tr>
<tr>
<td>User Groups</td>
<td>Students</td>
</tr>
<tr>
<td>Support Spaces</td>
<td>None</td>
</tr>
</tbody>
</table>

Activities & Uses

Shared work area for teachers to prepare instructional materials, confer with colleagues, assist students, plan and develop curricula, and conduct activities related to teaching and learning. Activities also include formal and informal conferences and consultation with colleagues, staff and students.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology

- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/ glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment

- Work tables and chairs
- Two instructor workstations along a wall
- Clock
- Base cabinets with counter work surface, adjustable shelving and hinged doors above base cabinets, locks
- Tall storage cabinets with adjustable shelving and hinged doors, locks
- (1) 4’ x 4’ tackboard

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Description and Goals

The teaching spaces are primarily updated existing classrooms that will foster a collaborative environment, further the goals of the Common Core State Standards and the implementation of Next Generation learning. The spaces will be connected to one another through the addition of transparency with interior windows and operable walls or large doors (perhaps overhead). Each classroom will include access to a collaboration room able to accommodate up to 8 persons.

The interior furnishings should be flexible and easy to reconfigure in a variety of arrangements to support various combinations of learning from individual and small group to collaboration spaces and testing. Wireless technology and connectivity will be implemented throughout with the goal of one-to-one personal devices able to tie into various output devices becoming the norm.

Many of the existing classrooms have attached outdoor learning patios with sliding door access. The intent is to replace the doors and windows with new energy efficient units and to upgrade the outdoor learning patios with low level enclosures, moveable furniture and overhead weather protection.
Space Types

Classroom

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Maximum visibility to outdoor learning area

Furniture & Equipment
• Instructor workstation
• Desktop computer workstations
• HiDef digital display
• Digital display wall-mount brackets
• Clock
• (1) 4’ x 4’ tackboard
• Base cabinet to include a countertop sink
• Multiple writable surfaces
• Adequate storage cabinetry for staff and student supplies and equipment, flexible and mobile
• Flexible, comfortable and reconfigurable furniture appropriate for the grade level and student size

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile
• Capability of opening (2) adjacent classrooms to each other via operable partitions to accommodate large group/team meeting configurations
• Adjacent to Outdoor learning areas

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Small Group Collaboration

Size
160 sf

Activities & Uses
Small group meeting and conference area for a variety of informal and formal student, faculty, and staff uses.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment
- (1) 4’ x 4’ tackboard
- Sidelight or view panel at door
- Tall storage cabinets
- Clock
- Digital display wall-mount
- HiDef digital display
- Work tables and chairs
- Notebook or counter work surface
- Wall cabinets with adjustable shelving and hinged doors

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces
None

User Groups
- Students: Varies
- Staff

Support Spaces
None

User Groups
- Students: Varies
- Staff
Space Types

EDP/Parent Center

Activities & Uses

The Extended Day Program (EDP) is intended to fit within a traditional-sized classroom space. This program accommodates students after school hours and provides activities and supervision for those in attendance. The EDP classroom should have flexible furniture that can be configured for group activities or individual study as well as an area with soft comfortable furniture. Movable storage elements should be planned for as well. These spaces should be equipped with the same technology provided for other instructional spaces on the campus.

One EDP Classroom at each school will also be utilized as a Parent Center when the EDP are not in session. A small lockable room of approximately 120 square feet should be included within this classroom to accommodate office supplies, a copier, printer and the storage of personal belongings for persons who are volunteering for various activities on campus.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment

- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Description and Goals

The site specific programming needs will be verified at each campus. While the Special Education classrooms should create an area specifically for the Special Education learner, it should not be separated from the other campus communities to the point of being isolated. The location of these facilities should be as centrally located as possible for easy access and participation by the students in all of the various specialty functions and areas of the campus. The configuration of the area must sustain the security and foster the safety of the Special Education learner by allowing easy and constant supervision by teachers.

The Special Education Suite shall include a large learning space of approximately 960 square feet with a sensory (or quiet room) directly adjacent and a direct adjacency to an outdoor learning area. This space should have the ability to be divided into two or three small rooms. A variety of flexible and light weight hard and soft furniture will be included as well as various storage devices. It must also have immediate access to single occupancy restrooms.

There is also the need at each campus to provide a smaller break-out room directly adjacent to two Speech Therapist offices and a Psychologist office. These spaces should also have a direct connection to outdoor learning spaces.

Special Education Instructional Community

<table>
<thead>
<tr>
<th>Space Type</th>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Day Class (SDC)</td>
<td>1</td>
<td>720</td>
<td>720</td>
</tr>
<tr>
<td>Resource Program Specialist (RSP)</td>
<td>1</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>OT/P.E.</td>
<td>1</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Quiet/Time Out</td>
<td>1</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Testing</td>
<td>1</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Psychologist</td>
<td>1</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Speech Therapy</td>
<td>1</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Toilet/Changing Room</td>
<td>1</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1,920</td>
<td></td>
</tr>
</tbody>
</table>
Space Types
SDC Classroom

Activities & Uses
Whole group and small group lecture/discussion, individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing with consideration given for special needs students.

Size
720 sf

Occupants
1 Instructor
12 Students

User Groups
Students
Staff

Support Spaces
Outdoor Learning Area

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Power for office machines
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/Intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Maximum visibility to outdoor learning area

Furniture & Equipment
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• (1) 4’ x 4’ tackboard
• Flexible/mobile storage as necessary
• Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Small Classroom/ Quiet Room

Activities & Uses
Small group meeting and conference area for a variety of informal and formal student, faculty, and staff uses that is also used as a quiet room when students need separation from the regular classroom.

Size
120 sf

Occupants
Varies

User Groups
Students, Staff

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Innovation Suite

Description and Goals

The Innovation Suite is a combination of a Science Classroom, Technology Classroom and a Maker Space. The Science Classroom should include 4-6 sinks throughout the space and is intended to be used for non-digital art instruction as well. The Technology Classroom will be used to instruct students on the use of various software programs, from word processing to animation. These technologies are intended to assist the students with developing and collaborating on projects that would be implemented with the maker space.

The Maker Space should be equipped with a variety of learning devises including 3-D printers, scanners, copy machines, kitchen equipment and flexible furniture. The spaces should be connected to one another with large-scale doors such as roll-up or sliding glass doors to encourage collaboration between the instructors and students. These specialty spaces should open onto a large, combined outdoor area for additional instructional use. Technology throughout the Innovation Suite should be wireless, seamless and interconnected. Adequate storage space should be included for students to store projects as they are being produced.

![Diagram of Innovation Suite](image-url)

<table>
<thead>
<tr>
<th>Space Types</th>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Classroom</td>
<td>1</td>
<td>960</td>
<td>960</td>
</tr>
<tr>
<td>Technology Classroom</td>
<td>1</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>Maker Space</td>
<td>1</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>Storage</td>
<td>3</td>
<td>300</td>
<td>900</td>
</tr>
<tr>
<td>Outdoor Patio</td>
<td>1</td>
<td>300</td>
<td>900</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>3020</td>
<td></td>
</tr>
</tbody>
</table>
Space Types

Science Room

Activities & Uses
Individual, small and whole group instruction and exploration to include applied scientific concepts. Instruction and exploration to include scientific experiments.

Size
960 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Storage
Maker space
Outdoor patio

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Power for office machines
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Ability to lock down doors
• Maximum visibility to outdoor learning area

Furniture & Equipment
• Instructor lab/portable demonstration station
• Student work tables with 4 seats per table
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• Perimeter base cabinets
• Tall storage caginets
• (1) 4’ x 12’ markerboard or marker wall
• (2) 4’ x 6’ tackboards
• Corridor/exterior display case for student work

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9'-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Technology Room

Activities & Uses
Individual, small and whole group instruction and exploration to include applied scientific concepts. Instruction and exploration to include scientific experiments specific to technology.

Size
960 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Storage
Maker space
Outdoor patio

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Power for office machines
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Maximum visibility to outdoor learning area
• Ability to lock down doors

Furniture & Equipment
• Instructor lab/portable demonstration station
• HiDef digital display
• Digital display wall-mount
• Clock
• Perimeter base cabinets
• Tall storage cabinets
• (1) 4’ x 12’ markerboard or marker wall
• (2) 4’ x 6’ tackboards
• Corridor/exterior display case for student work

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9'-0" min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Maker Space

Activities & Uses
Individual, small and whole group instruction and exploration to include applied scientific concepts. Instruction and exploration to include scientific experiments. A place where students learn by working with their hands and building things.

Size
1,100 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Storage
Science Room
Technology Room
Outdoor patio

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Power for office machines
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/ glare control
• Skylights acceptable
• Maximum visibility to outdoor learning area
• Ability to lock down doors

Furniture & Equipment
• Instructor lab/portable demonstration station
• HiDef digital display
• Digital display wall-mount
• Clock
• Perimeter base cabinets
• Tall storage cabinets
• (1) 4’ x 12’ markerboard or marker wall
• (2) 4’ x 6’ tackboards
• Corridor/exterior display case for student work

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0’’ min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Multi-Purpose Building

Description and Goals
Each campus will receive a new Multi-Purpose Building large enough to accommodate 400-500 students. The main multi-purpose space will be acoustically designed primarily for musical performances and able to be divided and acoustically sound-attenuated for events to occur simultaneously. Seating will be a combination of retractable theatrical seating and movable chairs. A stage shall be directly adjacent to the multi-purpose room, as well as general storage for chairs and equipment. The music instructional space shall be directly accessible to the stage and incorporate support spaces for instrument storage and cleaning (sink needed). The ceiling height should be a minimum of 12 feet.

The Multi-Purpose Building will also incorporate the food service function for the campus. The kitchen will be a serving kitchen receiving food deliveries from the District’s central kitchen facility. The serving area for the food service should connect directly to an outdoor covered eating area. Additional spaces that may be considered part of the Multi-Purpose Building depending on its location on campus is an office for Physical Education (120 square feet), an office for Maintenance, and storage for outdoor play equipment.
Space Types

Kitchen

Size
1,800 sf

Activities & Uses
- Food receiving, preparation and serving.

Occupants
- Kitchen Staff

User Groups
- Staff

Support Spaces
- Lockers
- Staff Toilet

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Window coverings as required for sun/glare control
- Skylights acceptable

Furniture & Equipment
- Food service director office workstation
- Miscellaneous food service equipment and furnishings at kitchen as determined by food service consultant and district food service director
- Tray retrieval/dishwashing system
- (8) 12" x 21" x 72" lockers in staff locker area
- Clock
- Meal accounting and inventory
- (1) 4' x 4' tackboard at office
- (1) 4' x 4' tackboard at staff lockers
- Walk-in cooler
- Walk-in freezer
- Dishwashing
- Dry storage
- Receiving area

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Multi-Purpose Area

Activities & Uses
Cafeteria dining, student gathering, large group assembly, and performance (stage) activities.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression
- Drinking fountains
- Lighting: per IES Lighting Handbook guidelines

Technology
- Intercom speakers, VoIP
- Intercom speakers
- Sound reinforcement system
- Hardwired video outlet to permit taping of in-room activities, transmitting to on-campus or off-campus locations, and receiving video transmission from on-campus distribution system at digital display
- Wireless access capable for most computer communications/applications
- Hardwired data outlet at “point of sale”
- Doors & Windows
- Natural light desirable
- Window coverings as required for sunglare control and darkening of space for stage/assembly activities
- Skylights acceptable

Furniture & Equipment
- Round dining tables and stacking chairs
- Digital displays on each side of stage
- (2) digital display wall-mount brackets
- Clock
- Sound amplification system
- Meal accounting and inventory
- Satellite service areas for carts

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 22-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Acoustic wass and/or ceiling panels as required for cafeteria and stage/assembly functions
- Room configuration/shape, acoustic treatment, and lighting to accommodate varied dining and assembly performances/activities
- Inviting, public/student-friendly atmosphere
- Direct access to outdoor dining and playground

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Stage

<table>
<thead>
<tr>
<th>Size</th>
<th>1,100 sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>Varies</td>
</tr>
<tr>
<td>User Groups</td>
<td>Students</td>
</tr>
<tr>
<td></td>
<td>Staff</td>
</tr>
<tr>
<td>Support Spaces</td>
<td>Operable Wall</td>
</tr>
</tbody>
</table>

Activities & Uses

Proscenium type stage without flyout (dead-hung scenery/curtains) for a variety of school lecture and performance functions to include school assembly, lecture, drama, band and orchestra concerts, choral, dance performances and video presentations. Stage may also double as an additional practice/music room.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for maintenance and general stage use
- Fluorescent working lights
- Stage lighting positions to include over-stage light bars and forestage light bars
- Stage lighting/dimmer system
- Stage sound system

Technology

- Lighting: per IES Lighting Handbook guidelines
- Sound reinforcement system with microphone receptacles at back wall, sides of proscenium, and stage front
- Hardwired video outlet to permit taping of stage performances, transmitting to on-campus or off-campus locations, and receiving video transmission from on-campus distribution system at digital display
- Wireless access capable for most computer communications/applications

Doors & Windows

- Operable wall at stage proscenium to create another music teaching space
- Access to the exterior from stage either by 4'-0" x 7'-0" door or roll-up door

Furniture & Equipment

- Portable music risers
- Motorized projection screen
- Support grid for dead-hung scenery, curtains and lighting
- Stage curtains (e.g., front curtain with valance, fire curtain, legs, borders, travelers, and cyclorama - curtain requirements to be determined

Special Considerations

- Ceiling material: exposed structure or painted gypsum board
- Ceiling height: as required for proscenium, valances, borders, lighting bars, and dead-hung curtains (approximately 20'-22' depending on proscenium height)
- Wall material: painted gypsum board
- Floor material: softwood, stained opaque black of vinyl composition tile
- Proper accessible path of travel to and from stage
- If platform stage, raise to 1'-6" with steps along front of edge of stage
- If a raised stage, place at 2'-0" with staircase at one side
- Ramp desirable, but if space is an issue, a lift will be needed

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Music

Activities & Uses

Whole and small group music instruction, rehearsal, and performance.

Size

1,400 sf

Occupants

1 Instructor
29 Students

User Groups

Students
Staff

Support Spaces

Outdoor area
Music storage

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Counter sink with drinking fountain bubbler for cleaning of musical instruments
- Outlets for general room, instructor computer and digital display
- USB charging outlets in room
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Ability to darken room in response to video projection requirements
- Ability to darken front or back half of room
- Lighting per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Intercom speaker
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sunglare control
- Skylights acceptable
- Ability to lock down door
- Acoustic seals at door

Furniture & Equipment

- (1) instructor station
- (2) HiDef digital display
- (2) digital display wall-mount bracket
- Clock
- File cabinets for sheet music storage
- (2) 4’ x 8’ markerboard
- One wall tackable wall surface
- Open tall music storage cabinets with adjustable, metal edged shelves

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0” min.
- Wall material: painted gypsum board
- Floor material: sealed concrete, vinyl composition tile or carpet tile
- Flat floor

- Various diffusers and reflectors on walls and ceilings to aid in acoustics in room
- Ability for mobile/sliding writing surfaces

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low V0C-emitting and recycled materials to maintain healthy air quality
Space Types

PE Office

Activities & Uses
Office space to prepare materials and conduct administrative activities to include individual and small group informal and formal conferences and consultations with colleagues, staff, students and community members.

Size
120 sf

Occupants
1 Instructor
1-2 visitors

User Groups
Staff

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Wireless access capable for most computer communications/applications
- Hardwired data outlets for local area network connectivity at the computer workstation
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Access to file server, printer and scanner
- Skylights acceptable
- Ability to lock down door

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sunglare control

Furniture & Equipment
- Staff workstation and chair
- Storage cabinets
- Clock
- Visitor chairs

Special Considerations
- Markerboard
- Tackable wall surface

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

for Schools,” Part 1: Permanent Schools
Description and Goals

The Library should be centrally located as possible. This Educational Specification is intended to fit within the space of two standard classrooms. It is envisioned that the Library will be the social hub to the campus able to accommodate small group collaborative learning, large group lectures, or individual learning opportunities. The furniture, including the book storage shelving, shall be flexible and easily reconfigured to accommodate the variety of activities that the Library will provide. Wireless technology and connectivity will be implemented throughout with the goal of one-to-one personal devices able to tie into various output devices becoming the norm.

A control and help desk shall be directly adjacent to the entrance to the Library and a small office and work area should also be included within the space.

Library

<table>
<thead>
<tr>
<th>Space Type</th>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help Desk</td>
<td>1</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Workroom/Storage</td>
<td>2</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>Learning Commons</td>
<td>1</td>
<td>1,440</td>
<td>1,440</td>
</tr>
<tr>
<td>Small Group Collaboration</td>
<td>2</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1,920</td>
<td></td>
</tr>
</tbody>
</table>
Space Types

Learning Commons

Activities & Uses
Individual and group use by students, staff, and the community for general reading, research, information access and retrieval, studying, and library/information literacy instruction. Activities within the reading area will include housing of print and non-print collections, charging and discharging of instructional and information materials, distribution/storage/charging of laptop computers, general reading, quiet studying, reference material/consultation, etc.

Support Spaces
Small group areas

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Wireless access capable for most computer communications/applications
- Hardwired data outlets for local area network connectivity at the computer workstation
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Access to file server, printer and scanner

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Movable, flexible, shelving for printed material, references, and periodical displays
- HiDef digital display
- Digital display wall-mount bracket
- Laptop/computer cart
- Book theft detection system at entry doors
- Clock
- Secure storage/charging of laptop computers, locks

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: varying
- Wall material: painted gypsum board
- Floor material: vinyl composition tile, sealed concrete, or carpet tile
- Flexible media center space with accommodations for relocation/reconfiguration of study seating and stack areas
- Movable, flexible, shelving for printed material, references, and periodical displays
- Digital display wall-mount bracket
- Book theft detection system at entry doors
- Clock
- Secure storage/charging of laptop computers, locks
- Ceiling material: acoustic ceiling tile
- Ceiling height: varying
- Wall material: painted gypsum board
- Floor material: vinyl composition tile, sealed concrete, or carpet tile
- Flexible media center space with accommodations for relocation/reconfiguration of study seating and stack areas
- Inviting public/student-friendly atmosphere, learning commons, student union, Starbucks atmosphere

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Educational Specifications

Space Types

Small Group

<table>
<thead>
<tr>
<th>Activity/Uses</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small group reading/collaboration area separated from the large Learning Commons. Rooms have operable walls to open to the Learning Commons.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>60 sf each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>Varies</td>
</tr>
<tr>
<td>User Groups</td>
<td>Staff/Students</td>
</tr>
<tr>
<td>Support Spaces</td>
<td>Learning Commons</td>
</tr>
</tbody>
</table>

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Wireless access capable for most computer communications/applications
- Hardwired data outlets for local area network connectivity at the computer workstation
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Access to file server, printer and scanner
- Telephone/intercom handset, VoIP
- Wireless access capable for most computer communications/applications
- Hardwired data outlets for local area network connectivity at the computer workstation
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Access to file server, printer and scanner

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Moveable, flexible furniture for quiet reading areas
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- Ceiling material: acoustic ceiling tile
- Ceiling height: varying
- Wall material: painted gypsum board
- Floor material: vinyl composition tile, sealed concrete, or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Special Considerations
Space Types

Help Desk

Size: 120 sf

Activities & Uses
Information resource for students and staff. Reception/waiting area for students awaiting appointment or needing help with their electronics.

Occupants: Varies

User Groups: Varies

Support Spaces: Circulation desk

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Adjustable lighting levels via independently controlled banks of lights
- Pendant lighting above desk
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Wireless access capable for most computer communications/applications
- Hardwired data outlets for local area network connectivity at the computer workstation
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Access to file server, printer and scanner
- Speaker system with volume control

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Stools for 2-3 visitors at help desk
- Desktop computer workstations
- Digital display located behind help desk
- Digital display wall-mount bracket
- Clock
- Circulation/help desk
- Book theft detection system
- Book drop, locks

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Work Room / Storage

Activities & Uses
Office space to confer with colleagues, prepare materials and conduct analysis related to the operation of the library. Activities include individual and small group informal and formal conferences and consultations with colleagues, staff, and students.

Storage room for storage of materials necessary to operate the library.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/Intercom handset, VoIP
- Wireless access capable for most computer communications/applications
- Hardwired data outlets for local area network connectivity at the computer workstation
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Access to file server, printer and scanner

Doors & Windows
- Natural light desirable
- Sidewall or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Staff workstation
- Cabinets
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Adjacent to Learning Commons
- Adjacent Help Desk
- Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Middle School Spatial Program
Description and Goals

The administrative office suite will oversee and coordinate all activities at the school. The public reception/welcome center should be near the drop-off and front of the school. Since all campuses need to be secured, this is the only point of entry at the exterior perimeter for visitors. The public must enter here before being allowed on the campus. Visitors will then be permitted on campus through the student reception area.

The administrative offices should be located to allow visual supervision of vehicular traffic at the campus and the pedestrian traffic coming onto campus. It should be clear from the front of the school where the administration building is located. Signage should be visible, readable and easy to understand. In existing buildings, the administration program is intended to reside in the space of three classrooms. To further enhance the “Learner Centered” environment, student work should be prominently displayed in the reception area and adjacent student gallery.

The administration specifications for the Middle School primarily focus on improving the security at the main campus entrance. Currently visitors must enter the campus to arrive at the administration offices. The lobby is small and congested and shared by both visitors and students. The intent is to provide entry to the administration directly from the parking and drop-off area for visitors and provide a separate entrance for students.
Space Types
Reception/Lobby

Size
250 sf

Activities & Uses
The reception/lobby becomes the point of access for the campus, a secured perimeter where all visitors must check in before being allowed on campus. Visitor parking area should be visually prominent at main campus entry and staff should have visual surveillance of visitors’ arrival. Students will have a separate entrance to the administration office.

Support Spaces
Public Restrooms

User Groups
Staff/students/visitors

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines

Technology
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media.

Doors & Windows
- Visibility from adjacent public entry area and reception to front of school
- Natural light desirable
- Skylights acceptable
- Window Coverings as require for sunglare control
- Ability to lock down doors

Furniture & Equipment
- Casual seating for 4-6 visitors
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- Tackable wall surfaces
- Trophy display cases/shelving
- Reception counter to facilitate receiving visitors yet provide privacy for clerks

Special Considerations
- Ceiling material: acoustic tile or exposed structure
- Ceiling height: 9’-0” min - a higher volume may be desired for display of student work
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

EXISTING / NO CHANGES
STUDENT
GALLERY
STUDENT
LOBBY
OPEN
ADMINISTRATION

NEW ADDITION / RECONFIGURATION
 ADMINISTRATION
CONF./PTA
HEALTH

LOUNGE /
WORKROOM

PRINCIPAL
CONF.
OFFICE
CONF.
FILES
TEL/
DATA

EDUCATIONAL SPECIFICATIONS

180 | 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN
Space Types

Open Administration

Size
320 sf

Occupants
Administrative staff

User Groups
Staff
Students

Support Spaces
Student reception/waiting area

Activities & Uses
Directly adjacent to the reception/lobby area, the open office with house administrative assistants, attendance and/or clerks. Staff will conduct various office and administrative activities to assist faculty, staff, students, and visitors.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Access to file server, printer and scanner
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Window coverings as required for sun glare control
- Skylights acceptable
- Ability to lock down doors

Furniture & Equipment
- Administrative office workstations with file cabinets and lockable storage
- Guest chairs

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-9” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Clear visual connection through the reception/lobby area to the front of school and parking lot
- Clear visual connection from student waiting to campus circulation or courtyard

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Student Gallery

Activities & Uses
An area dedicated for displaying student projects, including a large-scale digital monitor.

Size
50 sf

Occupants
Varies

User Groups
Varies

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Educational Specifications

Space Types

Student Lobby

<table>
<thead>
<tr>
<th>Size</th>
<th>50 sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>Varies</td>
</tr>
<tr>
<td>User Groups</td>
<td>Students</td>
</tr>
<tr>
<td>Support Spaces</td>
<td>None</td>
</tr>
</tbody>
</table>

Activities & Uses

Private entrance for students to the administration office for attendance, health visits, counseling, and other personal matters.

Building Systems

- Independent temperature control of area within flexible range set by district's EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable

Furniture & Equipment

- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Diagram:

- **NEW ADDITION / RECONFIGURATION**
 - Student Lobby
 - Reception / Gallery
 - Open Administration
 - Administration
 - Conf./PTA
 - Health
 - New Addition / Reconfiguration
 - Existing / No Changes
 - Lounge / Workroom
 - Health
 - Tel./Datafiles
 - Conf.
 - Conf.
 - Principal Office
 - W M

Legend:

- **ADMINISTRATION**
- **CONF./PTA**
- **HEALTH**
- **NEW ADDITION / RECONFIGURATION**
- **EXISTING / NO CHANGES**
- **LOUNGE / WORKROOM**
- **RECEPTION / LOBBY**
- **STUDENT GALLERY**
- **STUDENT LOBBY**
- **OPEN ADMINISTRATION**
Description and Goals

Each grade level is housed in a separate learning community. The intent is to enlarge the existing learning communities (currently able to accommodate 350 students) to accommodate 450 students each. The teaching spaces are primarily updated existing classrooms, with an added classroom, that will foster a collaborative environment, further the goals of the Common Core State Standards, and the implementation of Next Generation learning. The spaces will be connected to one another through the addition of transparency with interior windows and operable walls or large doors (perhaps overhead).

The addition is proposed to be constructed on the back of the science lab wing of each learning community. The existing science labs will be converted to a projects/student collaboration area. Also, two new science labs and two additional classrooms will be constructed which will require additional exterior doors at specific locations to convert the exterior circulation corridor to interior space.

The interior furnishings should be flexible and easy to reconfigure in a variety of arrangements to support various combinations of learning, from individual and small group to collaboration spaces and testing. Wireless technology and connectivity will be implemented throughout with the goal of one-to-one personal devices able to tie into various output devices becoming the norm.

Grades 6 to 8 Instructional Community

Grades 6-8 Instructional Community

<table>
<thead>
<tr>
<th>Space Type</th>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom/Studio</td>
<td>11</td>
<td>960</td>
<td>10,560</td>
</tr>
<tr>
<td>Science Lab</td>
<td>4</td>
<td>1,350</td>
<td>5,400</td>
</tr>
<tr>
<td>Prep/Storage</td>
<td>4</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>Teacher Collaboration/Workroom</td>
<td>1</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>Projects Area</td>
<td>1</td>
<td>1,600</td>
<td>1,600</td>
</tr>
<tr>
<td>Student Restrooms</td>
<td>2</td>
<td>480</td>
<td>960</td>
</tr>
<tr>
<td>Outdoor Learning</td>
<td>1</td>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>19,800</td>
<td></td>
</tr>
</tbody>
</table>
Space Types

Classroom

Size
960 sf

Occupants
1 Instructor
29 Students

User Groups
Students
Staff

Support Spaces
Project Area
Student Restrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Power for office machines
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Ability to lock down doors

Furniture & Equipment
• Instructor workstation
• Desktop computer workstations
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• (1) 4’ x 4’ tackboard
• Flexible/mobile storage as necessary
• Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile
• Ability for classrooms to be connect to one another with interior windows and operable walls or large door (perhaps overhead)

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Handbook guidelines
Lighting: per IES Lighting
Power for office machines
Surge suppression
Workstation use
Outlets for general room and required
Connected to campus EMS
Independent temperature
| 191 | 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN | 190 |
Space Types

Science Lab

Activities & Uses
Flexible science labs designed to teach various science subjects. Whole group and small group lecture and laboratory activities to include individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing in relation to science research and investigation.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system all digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Instructor workstation
- HID digital display
- Digital display wall-mount bracket
- Perimeter base cabinet to include a countertop sink
- Multiple writable surfaces or markerboards
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Support Spaces
- Prep/storage
- Outdoor learning

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system all digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Instructor workstation
- HID digital display
- Digital display wall-mount bracket
- Perimeter base cabinet to include a countertop sink
- Multiple writable surfaces or markerboards
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Work Room

Size: 480 sf
Occupants: Varies
User Groups: Staff
Support Spaces: Restrooms, Offices

Activities & Uses:
Instructor preparation and storage area for materials related to general science lab and lecture activities. Shared work/prep/storage area.

Building Systems:
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology:
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices

Doors & Windows:
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area
- Ability to lock down door

Furniture & Equipment:
- Work table and chairs
- Instructor workstations along a wall
- HIDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Base cabinets with counter work surface, adjustable shelving and hinged doors and drawers, locks
- Wall cabinets with adjustable shelving and hinged doors above base cabinets, locks
- Tall storage cabinets with adjustable shelving and hinged doors, locks

Special Considerations:
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability:
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Projects Area

Activities & Uses
Whole group meeting and conference area for a variety of informal and formal student, faculty, and staff uses.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces
Science Labs

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size
- (1) 4’x4’ tackboard

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Size
1,600 sf

Occupants
Varies

User Groups
Students
Staff
Space Types

Special Education Instructional Community

Description and Goals

The site specific programming needs will need to be verified at each campus. It is the intent to provide a Special Education Suite at each of the elementary and preschool campuses. The location of these facilities should be as centrally located as possible for easy access and participation by the students in all of the various specialty functions and areas of the campus. Safety and security through its location and transparency is very important to these spaces.

The Special Education Suite shall include a large learning space of approximately 960 square feet with a sensory (or cool-down room) directly adjacent and a direct adjacency to an outdoor learning area. This space should have the ability to be divided into two or three small rooms. A variety of flexible and lightweight hard and soft furniture will be included as well as various storage devices. It must also have immediate access to single occupancy restrooms.

There is also the need at each campus to provide a smaller break-out room directly adjacent to two Speech Therapist offices and a Psychologist office. These spaces should also have a direct connection to outdoor learning spaces.
Space Types
SDC Classroom

Activities & Uses
Whole group and small group lecture/discussion, individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing with consideration given for special needs students.

Size
720 sf

Occupants
1 Instructor
12 Students

User Groups
Students
Staff

Support Spaces
Adjacent to outdoor learning area

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces
Adjacent to outdoor learning area
Space Types
Small Classroom/ Quiet Room

Activities & Uses
Small group meeting and conference area for a variety of informal and formal student, faculty, and staff uses that is also used as a quiet room when students need separation from the regular classroom.

Size
120 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
RSP Room

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Maximum visibility to outdoor learning area

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Multi-Purpose Music Center

Description and Goals

This new facility is intended to function primarily as a performance space for the band, choral and theater programs. The multi-purpose seating for this venue will be a combination of retractable theatrical seating and movable chairs and will accommodate 750 persons. The space will also function as a large learning space for school assemblies and lectures. The space should be acoustically designed for musical performances both amplified and acoustic. The stage area associated with the multi-purpose room should function as both a musical performance space (with removable acoustic shell) as well as a theatrical space (with a full fly tower). The stage should be immediately adjacent to the support functions behind.

The Band and Orchestra rehearsal space will need to have a minimum ceiling height 14 feet and be acoustically designed for musical performance, rehearsal and recording. Instrument storage and instrument cleaning areas shall be included as well as practice rooms for individual and small groups. Immediately adjacent to Band and Orchestra Lab will be the Choral Lab which can share the recording areas and practice rooms. The Choral Lab will need to have a minimum ceiling height of 12 feet as well and include moveable risers.

Immediately adjacent to the entrance area/lobby will be the Theater Lab. This will be in the form of a small black box theater with a 14-foot minimum ceiling height with an adjustable lighting and mounting grid. Retractable theatrical seating should be included along one wall of the Theater Lab to accommodate up to 80 persons for small performances and rehearsals. Dressing rooms and a control booth need to be immediately adjacent to this space although they may serve the multi-purpose facility as well. Adequate storage should be considered for all rehearsal labs.
Space Types
Flat Theater/ Multi-Purpose

Activities & Uses
Facility will function mainly as performance space for band, choral, and theater programs. Additionally, large assemblies can be held in this space.

Size
6,400 sf

Occupants
Various Instructors
750 Students

User Groups
Students
Staff

Support Spaces
Stage

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/Intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Window coverings as required for sunglare control
- Skylights acceptable

Furniture & Equipment
- Combination of telescoping theatrical seating
- Theatrical lighting and controls to include light lines accessible by lift and two follow spot locations
- Appropriate acoustical treatments for both theatrical and musical performances
- Performance audio visual systems including sound, video and communication systems
- Projection systems

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 14'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Theater Room

Activities & Uses
Small black box theater lab for small performances and practices. Retractable seating for up to 60 persons.

Size
1,600 sf

Occupants
32 Students
1 Instructor
60 Visitors

User Groups
Students
Staff

Support Spaces
Production Storage

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down doors

Furniture & Equipment
- HiDef digital display
- Digital display wall mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible/moveable furniture

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 14’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Choral Room

Activities & Uses
Whole and small group music instruction, rehearsal, and performance.

Size
1,200 sf

Occupants
1 Instructor
60 Students

User Groups
Students
Staff

Support Spaces
Storage

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Interior wall glazing desirable
- Supervision from circulation desk and/or office areas
- Natural light desirable
- Skylight or view panel at door
- Window coverings as required for sunglare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- Multiple writable surfaces
- Student chairs
- Music stands
- Sound recording and playback equipment
- Tall storage cabinets with adjustable shelving and hinged doors, locks
- Instrument racks
- Sound reinforcement

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 14'-20' preferred
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Built-in risers at one end of room

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Band Room

Activities & Uses
Whole and small group music instruction, rehearsal, and performance.

Size
1,600 sf

Occupants
1 Instructor
80 Students

User Groups
Students
Staff

Support Spaces
Storage

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Power for office machines
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Ability to lock down door

Furniture & Equipment
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• Student chairs
• Music stands
• File cabinets for sheet music storage
• Markerboards
• One wall tackable wall surface
• Open tall music storage cabinets with adjustable, metal edged shelves
• Various Instruments

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 18’ - 22’ preferred
• Wall material: painted gypsum board or acoustic wall panels
• Floor material: vinyl composition tile or carpet tile
• Flat floor
• Various diffusers and reflectors on walls and ceilings to aid in acoustics
• Ability for mobile/sliding writing surfaces

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Stage

Activities & Uses
Proscenium type stage with fly tower for a variety of school lecture and performance functions to include school assembly, lecture, drama, band and orchestra concerts, choral, dance performances and video presentations. Stage may also double as an additional practice/music room.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable

Furniture & Equipment
- Portable music risers
- Motorized projection screen
- Support grid for dead-hung scenery, curtains and lighting
- Stage curtains (e.g., front curtain with valance, fire curtain, legs, borders, travelers, and cyclorama - curtain requirements to be determined

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 14'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Scene Shop

Activities & Uses
The scene storage serves as a support learning studio for set design in support of various student theater performances to include construction of scenery-scale objects and props and backdrops.

Size
600 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Tool Storage

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Deep basin sink with hot and cold water
- Power to dust collection system
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- CAPABLE OF STREAMING MEDIA

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Roll-up/overhead door access for large materials - to stage and exterior
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Instructor workstation
- Woodshop or similar equipment
- Spray booth
- Dust/wood chip collection system
- Tool storage cabinets, locks
- Chemical storage, locks
- Large work tables
- Markerboard
- Tackable wall surfaces
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 12’-0” min.
- Wall material: painted gypsum board
- Floor material: sealed concrete
- Connection to large covered exterior work area
- Direct connection to stage

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-smitting and recycled materials to maintain healthy air quality
Space Types

Lobby

Activities & Uses

Pre-function and gathering space for theater performances. Gallery space for exhibition of student work.

Size

800 sf

Occupants

Varies

User Groups

Students, Staff

Support Spaces

Concessions, Ticket Booth

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Drinking fountains
- Spot lighting for student artwork
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Skylights acceptable
- Ability to lock down doors

Furniture & Equipment

- Comfortable casual seating
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- Display cases for display of student work

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 12'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile, sealed concrete, or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Offices

Activities & Uses
Office space to confer with colleagues, prepare materials and conduct activities related to the operation of the Multi-Purpose Music Center. Activities also include individual and small group informal and formal conferences and consultations with colleagues, staff, and students.

Size
120 sf each

Occupants
Varies

User Groups
Staff

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Wireless access capable for most computer communications/applications

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Administrative staff workstations for each occupant, storage cabinets
- Clock
- (1) 4’ x 4’ tackboard
- Base cabinets with adjustable shelving and hinged doors
- Base cabinets with counter work surface

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Green Room

Size
240 sf

Activities & Uses
Small group video and broadcast instruction and production activities.

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Dressing Rooms

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- Air delivery/velocity designed for low ambient noise level and no curtain billowing
- Clean, segregated power distribution with surge suppression
- Theatrical/studio lighting at bar grid

Technology
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Furniture & Equipment
- Video and audio monitors
- Flexible, comfortable furniture
- Clock
- Green screen wall
- Displays, including wireless and mobile devices
- Capable of streaming media
- Speaker system with volume control
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays

Special Considerations
- Ceiling material: exposed structure
- Ceiling height: 16’-0” min.
- Wall material: painted gypsum board and acoustical wall panel on all walls
- Floor material: vinyl composition tile, sealed concrete, or carpet tile
- Acoustical: min 65 rating between studio and adjacent occupied spaces
- Surfaces to be low reflectance black
- Soundproof

Sustainability
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Collaboration Lab

Activities & Uses

The existing multi-purpose room will be converted to a student projects and collaboration space. Flexible furniture and interactive technology with Wi-Fi access will be provided for students to use the space as a study area, an assembly area or a performance and presentation area (utilizing the existing stage). The area immediately adjacent to the space that is currently an under-utilized staff dining area will be converted to a staff work room and conference room with transparency to help with monitoring of the student collaboration room. Storage will be adjacent to the main space for student projects.

Size

4,000 sf

Occupants

Varies

User Groups

Students
Staff

Support Spaces

Stage
Staff Conference/Workroom

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable

Furniture & Equipment

- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
High School
Spatial Program
Space Types

Learning Commons/ Media Center

Description and Goals

The vision for the Media Center is to provide an open, flexible gathering space for students to interact and work in various size groups on collaborative projects. The interior book storage should consist of movable shelving units that can be reconfigured as necessary for the space to be as open and responsive as possible for gathering, presentations and group activities. The furniture should be flexible and collaborative to allow for various configurations for group as well as individual activities. A portion of the space will also incorporate operable transparent walls or large-scale overhead doors to allow the space to be divided into various-sized, small-group collaboration spaces.

Immediately adjacent to the main Media Center space will be a technology-oriented maker space that will encourage hands-on student learning. This space should include appropriate flexible furniture able to be reconfigured depending on the needs of the students. Equipment for various media outputs from printers, interactive display monitors, 3-D printers, CNG cutting and laser will be provided for the students’ use in developing their projects. This space should include a technology ‘genius bar’ to assist the students with software and hardware needs as this will be a resource space for students to develop digital project presentations utilizing various presentation software. Separate storage for both materials and projects should be included immediately adjacent to the maker space as well.
Activities & Uses
Individual and group use by students and staff for general reading, research information access and retrieval via stacks, periodicals, and internet access, studying and tutoring. Activities to include use of computer carrels for research, general reading and open study, and technology assistance from on-site technology staff and research assistance.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Acceptable for supervision from office/work support
- Sidelight or view panel at door
- Window coverings as required for sunglare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- At stacks: shelving for print material (5-high shelving), volumes reference (3-high shelving), periodical display shelving
- Rectangular work/study tables
- Groups of soft, casual seating
- HiDef digital display
- Digital display wall-mount system
- Laptop computer cart
- Book theft detection system at entry doors
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile, painted gypsum board, tackable wall surfaces for display
- Floor material: vinyl composition tile or carpet tile
- Flexible media center space with accommodations for relocation/reconfiguration of study and stacks areas
- Ceiling height: varying
- Wall material: painted gypsum board, tackable wall surfaces for display
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Starbucks atmosphere
- Inviting, public/student-friendly atmosphere, learning commons, student union
- Sustainable design

Support Spaces
- Large/small group meeting rooms

Size
4,000 sf

Occupants
Varies

User Groups
- Students
- Staff

Support Spaces
- Large/small group meeting rooms
Space Types

Technology Lab

Activities & Uses

Computer supported technology instruction and exploration to include demonstration, discussion, individual and small group cooperative and collaborative learning.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media
- Speaker system with volume control

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Acceptable for supervision from control/help desk
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size
- Printer station

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Separation from reading area (acoustics) but a direct connection to the reading area or control

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Help Desk/Control

<table>
<thead>
<tr>
<th>Size</th>
<th>400 sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>2-3 staff/ students varies</td>
</tr>
<tr>
<td>User Groups</td>
<td>Students, Staff</td>
</tr>
<tr>
<td>Support Spaces</td>
<td>Lobby</td>
</tr>
</tbody>
</table>

Activities & Uses

Information resource for students/staff, including needing help with their electronics and checking out books.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sunglare control
- Skylights acceptable
- Ability to lock access at entry doors

Furniture & Equipment
- Stools for 2-3 visitors at help desk
- 2-3 desktop computer workstations
- HiDef digital display

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: carpet tile
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Circulation/help desk millwork for workstations
- Book theft detection system at entry doors
- Book drop, lock

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Lobby

Activities & Uses
A general reception area between restrooms and main learning commons. Also can be used to display student work.

Size
600 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Restrooms

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Doors & Windows
 - Natural light desirable
 - Sidelight or view panel at door
 - Window coverings as required for sun/glare control
 - Skylights acceptable
 - Ability to lock down doors

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’x4’ tackboard

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Work Room

Activities & Uses
A combination of staff lounge and workroom, staff will use this space for office supplies, storage, printing, copy and mail distribution/delivery. Faculty and staff can collaborate with colleagues, take breaks, relax, dine and snack.

Size
600 sf

Occupants
Varies

User Groups
Staff

Support Spaces
Storage

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Lounge seating
- Tables and chairs for lunch and team meetings
- Small refrigerator
- Kitchenette base cabinets with counter work surfaces, adjustable shelving and hinged doors and drawers, countertop sink, and locks

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Lighting: per IES Lighting Handbook guidelines

Size
600 sf

Occupants
Varies

User Groups
Staff

Support Spaces
Storage
Space Types

Group Meeting Rooms

Activities & Uses
Whole and small group meeting and conference area for a variety of informal and formal student, faculty and staff uses.

Size
1,200 sf
600 sf

 Occupants
Varies

User Groups
Students
Staff

Support Spaces
Learning Commons

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun glare control
- Skylights acceptable
- Maximum visibility to learning commons
- Ability to lock down doors

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Conference tables and chairs for flexible seating
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

<table>
<thead>
<tr>
<th>LARGEST GROUP MEETING ROOMS</th>
<th>LEARNING COMMONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMALL GROUP MEETING ROOMS</td>
<td>TECH. SUPPORT</td>
</tr>
<tr>
<td></td>
<td>TECH. STD.</td>
</tr>
<tr>
<td></td>
<td>PROJECT STD.</td>
</tr>
<tr>
<td></td>
<td>TECH. LAB. STD.</td>
</tr>
<tr>
<td></td>
<td>DATA / I.T. ROOM</td>
</tr>
<tr>
<td></td>
<td>STO.</td>
</tr>
<tr>
<td></td>
<td>LOBBY</td>
</tr>
<tr>
<td></td>
<td>HELP DESK / CONTROL</td>
</tr>
<tr>
<td></td>
<td>WORK ROOM</td>
</tr>
<tr>
<td></td>
<td>STORAGE</td>
</tr>
</tbody>
</table>
Space Types

English Learning Center

Description and Goals

The new English Learning Center will be located on the second and third floors of the Media Center building. To foster a collaborative environment, each group of two classrooms will include a group collaboration or instructor collaboration space. The classrooms will include transparency between them and include operable walls or large-scale overhead doors to provide connectivity to promote collaborative teaching models being implemented to support the Common Core State Standards and the principles of Next Generation learning. To reinforce the sense of community, a student projects/study area will be included at each level and connected with a two story volume between the second and third floors. Immediately adjacent to the student projects/study area will be an instructor collaboration room that will function as a work room and a meeting space as well as visible monitoring of the student projects/study areas.
Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Space Types
Classrooms

Activities & Uses
Whole group and small group lecture/discussion. Individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm-suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Collaboration Space

Activities & Uses
Small group meeting room for use by students, faculty and staff for collaboration on projects.

Size
160 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Classrooms

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sunlight control if exterior windows
- Skylights acceptable

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’x4’ tackboard
- Conference table and chairs for flexible seating

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Staff Workroom/Collaboration Space

Activities & Uses
Office space to develop curricula, prepare instructional materials, confer with colleagues, assist students and conduct activities related to the business of teaching and learning. Activities also include informal and formal conferences and consultations with colleagues and staff, design and processing of course handouts and examinations; assessing, critiquing and evaluating student projects, papers, and examinations; researching, corresponding, and developing classroom materials.

Size
800 sf

Occupants
Varies

User Groups
Staff

Support Spaces
Project Area

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and work station use
• Clean, segregated power distribution with surge suppression
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices

• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable

Furniture & Equipment
• Instructor workstations
• Work/conference tables
• Base cabinets with work area, counter top sink, and upper storage
• Copier
• Small refrigerator
• Storage cabinets, locks
• Clock
• (1) 4’ x 4’ tackboard

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

<table>
<thead>
<tr>
<th>800 sf</th>
<th>Varies</th>
<th>Staff</th>
<th>Project Area</th>
</tr>
</thead>
</table>

Second Floor

First Floor
Project Area

Activities & Uses
Flexible learning common space for small and large learning groups, activities to include student gathering, large group assembly, instructor and community use. Space also to be used as flexible lab space for whole group and small group lecture/discussion, individual, small group, and whole group cooperative and collaborative teaching and learning activities, instructor group tutoring, peer tutoring, and student testing.

Size
1,920 sf

Occupants
Varies

User Groups
- Students
- Staff

Support Spaces
- Classrooms

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture appropriate for this grade level and student size

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 12’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Athletics/
Physical Education Level-1

Description and Goals
The Athletic Complex will consist of a large, three-court gymnasium. Auxiliary spaces will also be provided to support the physical education programs such as weight room, practice gym, cheer/tumbling, wrestling, dance and yoga. Food service and a ticket booth will be located near the entrance of the facility to support stadium events and indoor events.

Athletics/ Physical Education

<table>
<thead>
<tr>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26,000</td>
<td>26,000</td>
</tr>
<tr>
<td>1</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>1</td>
<td>7,000</td>
<td>7,000</td>
</tr>
<tr>
<td>1</td>
<td>1,600</td>
<td>1,600</td>
</tr>
<tr>
<td>1</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>1</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>2</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>2</td>
<td>1,400</td>
<td>2,800</td>
</tr>
<tr>
<td>2</td>
<td>1,000</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>2,400</td>
<td>2,400</td>
</tr>
<tr>
<td>1</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>160</td>
</tr>
</tbody>
</table>

Team Rooms - Track & Field

<table>
<thead>
<tr>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,600</td>
<td>1,600</td>
</tr>
<tr>
<td>1</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>1,600</td>
<td>1,600</td>
</tr>
<tr>
<td>1</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>1</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>
Space Types

Courts

Size
26,000 sf

Occupants
Varies

User Groups
Students/Staff
Visitors

Support Spaces
Gym storage
Public restrooms

Activities & Uses

The gymnasium will consist of three full-size courts with high ceilings (basketball 94’x50’, volleyball court 60’x30’) similar to college competition courts. The center court will be used for competition and both sides of the retractable bleachers can be pulled out for competition. Two drop down baskets on each end of each court, plus two drop down baskets on each side of each court will be provided. (6 baskets per court, 18 baskets total)

A permanent camera will be set-up for each court, allowing live video feed into trainer’s rooms so trainer can be working with athletes and still keep an eye on the game/injuries.

Heavy screens will be used for divisions on courts. All three courts will be used for basketball tournaments, so sidelines will have enough room for chairs, walking path for spectators and out of bounds. The bottom row of bleachers will be used for seating on side courts. Courts will be wide enough to fit three perpendicular “practice” volleyball courts.

Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple source input for digital displays, including wireless and mobile devices

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/fire suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Glare reducing lenses
• Lighting: per IES Lighting

Furniture & Equipment
• Rectangular glass basketball boards
• Scoreboards
• Shot clocks
• Telescoping bleachers
• PE equipment

• Capable of streaming media
• Control booth area @ floor for games

Doors & Windows
• Natural light desirable
• Sidelite or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Ability to lock down door

Special Considerations
• Ceiling material: acoustic metal deck
• Ceiling height: 30’-0” min.
• Wall material: painted gypsum board
• Acoustical panel as required
• Floor material: maple gym floor

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Competition Gym/ Auxiliary Gym

Size
7,000 sf

Activities & Uses
The auxiliary court/competition gym will be used for warm-up, off-season practice and PE. Depending on size of retractable bleachers, the gym could also be used for small wrestling meets or dance/cheer events. Recommended size is 70' x 100' total space. Lighting will be sports center "theatrical".

Support Spaces
Gym storage
Public restrooms

User Groups
Students
Athletes
Staff
Spectators

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

Doors & Windows
- Capable of streaming media
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Gym storage
- Storage for field equipment
- Rectangular glass basketball boards
- Canvas/mesh divider curtains
- Scoreboards
- Shelf clocks
- Telescoping bleachers
- PE equipment

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 25'-0" min.
- Wall material: painted gypsum board
- Floor material: maple gym floor

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Team Rooms

Activities & Uses

Team rooms will be located directly adjacent to gym floor for quick access at halftime and/or warmups. Team rooms will have lockers, permanent benches, a game clock, and toilets/showers.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting
- Design to integrate durable materials to be used such as wheat board in casework

Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

Size
- Varies

Occupants
- Varies

User Groups
- Students
- Staff

Support Spaces
- Lockers
- Toilets
- Showers

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/gleam control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Shared instructor/coach work/planning stations with chairs and file cabinets
- Individual and column showers
- Toilets
- Drinking fountains
- Permanent bench
- Game clock

Special Considerations
- Ceiling material: painted exposed structure or painted gypsum board
- Ceiling height: 10’-0’’ min.
- Wall material: painted concrete block or painted gypsum board
- Floor material: Sealed concrete

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-smiling and recycled materials to maintain healthy air quality
Space Types

Coaches’ Offices

Activities & Uses

The coaches’ office will be shared for by five different sports teams—boys and girls basketball; boys and girls volleyball; and wrestling. The office will contain desk space, locked storage for files, t-shirts, personal items, misc. White board cabinets and walls with flat screen TVs and plug-ins will be provided.

Handbook guidelines

• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• glare reducing lenses
• Lighting: per IES Lighting
• Capable of streaming media

Doors & Windows

• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun glare control
• Skylights acceptable
• Ability to lock down door

Furniture & Equipment

• HiDef digital display
• Digital display wall-mount bracket
• Clock
• (1) 4’ x 4’ tackboard
• Flexible/mobile storage as necessary
• Flexible, comfortable and reconfigurable furniture

Special Considerations

• Ceiling material: acoustic ceiling tile
• Ceiling height: ‘10’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability

• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low V.O.C.-emitting and recycled materials to maintain healthy air quality
Space Types

Big Equipment Storage

Activities & Uses

The big equipment storage room should be adjacent to gym floor and have a garage-type door for easy access. Equipment that will be stored will be for large equipment such as shooting machine, Zamboni, volleyball poles and nets, scorekeeping and media tables (ads), chairs, mats, water, basketballs, and volleyballs.

Support Spaces

None

Building Systems

• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology

• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple-source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows

• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sunglare control
• Skylights acceptable
• Ability to lock down door

Furniture & Equipment

• Large garage-type roll up doors
• Shelving for volleyball poles and nets
• Storage cabinets for basketballs and volleyball
• Storage area for chairs and mats

Special Considerations

• Ceiling material: acoustic ceiling tile
• Ceiling height: 10’-0” min.
• Wall material: painted gypsum board
• Floor material: sealed concrete
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Small Equipment Storage

Activities & Uses
The small equipment storage room should have “Gear Boss” cages for each sport. The Gear Boss cages will store uniforms, practice gear, pads, helmets, etc.

Size
1,600 sf

Occupants
Varies

User Groups
Varies

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Gear boss cages
- Uniform storage
- PE Equipment storage

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0” min.
- Wall material: painted gypsum board
- Floor material: sealed concrete

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Weight Room

Activities & Uses

The weight room should include both heavy weights and light weights for a variety of training. Heavy weights should have platforms and racks for football, wrestling, and baseball.

Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

- Capable of streaming media
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment

- Hi Def digital displays
- Self-contained workout stations with floor system pad
- Dumbbell stations
- Leg press/calf machine
- Roman chair
- Jump rope area
- Abdominal mat
- Recumbent bikes
- One mirror wall
- Table with 2 chairs
- Shelving on wall for storing weights
- Markerboard
- Tackboard
- Clock

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0” min.
- Wall material: painted gypsum board
- Floor material: sealed concrete

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Training Rooms

Activities & Uses

A variety of physical education and athletic related activities including sports injury prevention, treatment, and rehabilitation. Large training room in close proximity to weight room and field for athletes. Small training room for gym use.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

Technology

- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment

- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ backboard
- Training tables
- Treadmill
- Stationary bikes
- Microwave oven
- Refrigerator
- Ice machine
- Base cabinets with counter sink
- Tall storage cabinets

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Size

800 / 400 sf

Occupants

Varies

User Groups

Students
Staff

Support Spaces

Weight Room
Field Access
Gymnasium Access

Space Types

Athletics/Physical Education Level-2

Description and Goals

The second level of the Athletics Complex will house a variety of physical and educational-type classrooms.

Athletics/Physical Education

<table>
<thead>
<tr>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workout Rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight Room</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td>Light Weights & Machine Room</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td>Cardio Room</td>
<td>1</td>
<td>1,600</td>
</tr>
<tr>
<td>Plyometrics Room</td>
<td>1</td>
<td>1,600</td>
</tr>
<tr>
<td>Dance/Yoga Room</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td>Cheer / Tumbling Room</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td>Wrestling Room</td>
<td>1</td>
<td>3,200</td>
</tr>
<tr>
<td>Screening Room</td>
<td>1</td>
<td>1,200</td>
</tr>
<tr>
<td>Cheer Team Room</td>
<td>1</td>
<td>1,200</td>
</tr>
<tr>
<td>Dance Team Room</td>
<td>1</td>
<td>1,200</td>
</tr>
<tr>
<td>P.E. Locker Rooms</td>
<td>2</td>
<td>2,500</td>
</tr>
<tr>
<td>P.E. Offices</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>Lobby/Display</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td>Ticketing</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>Public Restrooms</td>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>Snack Kitchen</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>Kitchen Storage</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Athletic Director's Office</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>Study Learning Center</td>
<td>1</td>
<td>1,600</td>
</tr>
<tr>
<td>Instructor/Coach Collaboration - Lounge</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>Supply Room</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wrestling Room

Activities & Uses
The wrestling room will be used for team practices and competitions. Bleachers will be provided for up to 100 visitors so teams can compete in wrestling room and not have to move mats to center court.

Size
3,200 sf

Size
3,200 sf

Occupants
Varies

User Groups
Athletes
Staff

Support Spaces
None

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- Bleachers
- Wrestling mats
- HiDef digital displays
- Digital display wall mounts
- Markerboard or marker wall
- Tackable wall surface
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 10'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Locker Rooms

Activities & Uses

The Locker Rooms provide storage of street and physical education clothing / athletic clothing, changing, team meetings, showering, drying, and toilet functions for all student physical education activities as well as sports competition teams.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

- Capable of streaming media
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Doors & Windows

- Steel doors and frames
- Fire alarm/suppression
- Door closer
- Self-closing swing doors
- Fire alarm
- Smoke alarm
- Emergency exit

Furniture & Equipment

- Shared Instructor/coach work/planning stations with chairs and file cabinets
- Lockers (number to be determined)
- Drinking fountains
- Toilets and sinks
- Permanent bench
- Game clock

- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Special Considerations

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces

Team rooms
Coach collaboration

User Groups

Students
Staff

Occupants

Varies

Size

Varies

Lockers

Girls P.E. lockers
Boys P.E. lockers
GirlsPE lockers
BoysPE lockers

Sustainability
Space Types

Workout Rooms

Size
- Varies

Occupants
- Varies

User Groups
- Students
- Staff

Support Spaces
- None

Activities & Uses
The plyo, cardio, and light-weights rooms should be on the second level of the athletics complex. The plyo room should be large enough for mats, bands, lunes, sit-ups, pushups, and jump boxes. The cardio room should include bikes and elliptical machines. Light weights should include exercise machines for leg presses, curl, squats, incline bench, and dumbbells.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting

Handbook guidelines
- Capable of streaming media

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall mount brackets
- Markerboard
- Tackboard
- Clock
- Elliptical machines
- Stationary Bikes
- Exercise machines
- Mirror on side walls

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0” min.
- Wall material: painted gypsum board
- Floor material: sealed concrete or sports rubber flooring

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

- LED lighting
- Glare reducing lenses
- Clean, segregated power workstation use
- USB charging outlets in room required
- Fire alarm/suppression as connected to campus EMS
- Room temperature sensor system
- Range set by district’s EMS control of area within flexible range

Support Spaces
- LOBBY
- PLYO ROOM
- CARDIO ROOM
- LIGHT WEIGHT ROOM
- STUDY LEARNING CENTER
- DANCE / TUMBLING ROOM
- CHEER / TUMBLING ROOM
- WRESTLING ROOM
- TEAM ROOM
- CHEER ROOM
- DANCE ROOM
- GYM ROOM
- LOCKERS
- BOYS LOCKERS
- GIRLS LOCKERS
- MENS P. E. OFFICE
- WOMENS P. E. OFFICE
- STUDY ROOM
- DIRECTOR OFFICE
- KITCHEN
- SNACK ROOM
- BREAK ROOM
- TICKETS OFFICE
- COACH OFFICE
- DIRECTOR OFFICE
- LOCKERS
- BOYS LOCKERS
- GIRLS LOCKERS
- P. E. OFFICE
- MENS P. E. OFFICE
- LOCKERS
- BOYS LOCKERS
- GIRLS LOCKERS
- P. E. OFFICE

276 | 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN
Screening Room

- **Size**: 1,200 sf
- **Occupants**: Varies
- **User Groups**: Students, Staff
- **Support Spaces**: None

Activities & Uses
The screening room should be on the second level of the Athletics complex and able to accommodate up to 60 people with a large screen, white boards, and technology.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Cheer / Tumbling Room

Space Types

Activities & Uses
The Cheer/Tumbling Room should be on the second level of the Athletics complex. The room will have mirrors and floor mats.

Size
2,000 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Cheer Team Room
Storage

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple-source input for digital displays, including wireless and mobile devices

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Ability to lock down door

Furniture & Equipment
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• (1) 4’ x 4’ tackboard
• Mirrors on side walls
• Floor mats

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 14’-0” min.
• Wall material: painted gypsum board
• Floor material: maple wood dance flooring

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Dance/ Yoga Room

Activities & Uses
The Dance/Yoga Room should be on the second level of the Athletics complex. The room will have ballet barres, mirrors, flat screen TVs, and speakers.

Size
2,000 sf

Occupants
Varies

User Groups
Students
Staff

Support Spaces
Dance Team Room
Storage

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment
- HiDef digital display
- Digital display wall mount brackets
- Adjustable ballet barres
- Mirrors on side walls
- Tackable wall surface
- Clock

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 14'-0" min.
- Wall material: painted gypsum board
- Floor material: maple wood dance flooring

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN
Space Types

Study Learning Center

Activities and Uses

The Study Learning Center is a gathering point for students and the community during events. Adjacent to the lobby and snack kitchen, the center can also accommodate instruction in its support of study rooms.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines

Technology

- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac, and Windows mirroring
- Multiple-source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down door

Furniture & Equipment

- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Flexible/mobile storage as necessary
- Flexible, comfortable and reconfigurable furniture

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 10’-0’ min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of readily renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Support Spaces

Snack Kitchen
Study Room
Lobby/Display
Lobby/ Display Space Types

Activities & Uses

The Lobby serves as both a post and pre-function gathering space supporting athletic and school activities as well as a point of entry to the athletic heart of the campus displaying trophies, awards, and special recognitions awarded to students.

Size
1,200 sf

Occupants
Varies

User Groups
Students
Staff
Spectators

Support Spaces
Ticketing booth
Public restrooms
Concessions

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple-source input for digital displays, including wireless and mobile devices

• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sunglare control
• Skylights acceptable
• Ability to lock down door

Furniture & Equipment
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• (1) 4’ x 4’ tackboard
• Flexible/mobile storage as necessary
• Flexible, comfortable and reconfigurable furniture
• Lockable glass display cases for displaying student work, awards, and trophies

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 12’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types
Athletic Director’s Office

Size
150 sf

Activities & Uses
Office space to prepare materials and conduct administrative activities to include individual and small group informal and formal conferences and consultations with colleagues, staff, students and community members. Activities may also include confidential discussions between parents, students, and athletic / academic officials.

Occupants
1 primary, 2-4 visitors

User Groups
Students
Staff

Support Spaces
None

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression as required
• USB charging outlets in room
• Outlets for general room and workstation use
• Clean, segregated power distribution with surge suppression
• Glare reducing lenses
• Lighting: per IES Lighting Handbook guidelines

Technology
• Telephone/intercom handset, VoIP
• Data outlets for local area network connectivity
• Hardwired outlet to receive transmission from on-campus distribution system at digital display
• Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
• Multiple-source input for digital displays, including wireless and mobile devices
• Capable of streaming media

Doors & Windows
• Natural light desirable
• Sidelight or view panel at door
• Window coverings as required for sun/glare control
• Skylights acceptable
• Ability to lock down door

Furniture & Equipment
• HiDef digital display
• Digital display wall-mount bracket
• Clock
• (1) 4’ x 4’ tackboard
• Administrative office workstation
• Lockable file cabinets

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Industrial Space

Description and Goals

The existing campus auto shop will be converted into an industrial-oriented Maker Space (an additional Maker Space more technology-oriented will be included with the Media Center). Activities within this space will include woodworking, metal working, electronics, and textiles utilizing laser cutting and computer design technologies as part of the project collaboration process. Furniture should be impact resistant with appropriate finishes but also flexible and moveable to accommodate various configurations for student group sizes. There should be the ability to configure the space for a lecture or formal testing. Separate storage areas must be provided for materials and students projects.

Industrial Space

<table>
<thead>
<tr>
<th>QTY</th>
<th>SF</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,300</td>
<td>6,300</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>1</td>
<td>Varies</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: 7,600
Space Types
Industrial Maker Space

Activities & Uses
The Industrial Maker Space provides space to support both collaborative and individual small and large group learning activities focused on potential industrial arts and engineering technology activities.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/ suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology
- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset, VoIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows
- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down doors
- Maximum visibility to outdoor learning area

Furniture & Equipment
- Instructor workstation
- Student work tables
- HiDef digital display
- Digital display wall-mount bracket
- Clock
- Perimeter base cabinets
- Tall storage cabinets
- (1) 4’ x 12’ markerboard or marker wall
- (2) 4’ x 6’ tackboards

Special Considerations
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” max.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Storage

Size
500 sf each

Activities & Uses

Storage room for industrial maker space. Storage area will be large enough for student projects and material storage will be able to store variety of products for student work.

Building Systems
- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses
- Lighting: per IES Lighting Handbook guidelines
- Display: HiDef digital display
- Displays: Digital display wall-mount
- Clock: Perimeter base cabinets
- Windows: Tall storage cabinets
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down doors
- Ceiling material: acoustic ceiling tile
- Ceiling height: 9'-0" min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile
- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality
Space Types

Office

Size

120 sf

Activities & Uses

Office space to prepare materials and conduct administrative activities to include individual and small group informal and formal conferences and consultations with colleagues, staff, students and community members.

Building Systems

- Independent temperature control of area within flexible range set by district’s EMS system
- Room temperature sensor connected to campus EMS
- Fire alarm/suppression as required
- USB charging outlets in room
- Outlets for general room and workstation use
- Clean, segregated power distribution with surge suppression
- Power for office machines
- Glare reducing lenses

Technology

- Lighting: per IES Lighting Handbook guidelines
- Telephone/intercom handset
- VSIP
- Data outlets for local area network connectivity
- Hardwired outlet to receive transmission from on-campus distribution system at digital display
- Apple TV available for various network devices to connect to digital display via iPad, Mac and Windows mirroring
- Multiple source input for digital displays, including wireless and mobile devices
- Capable of streaming media

Doors & Windows

- Natural light desirable
- Sidelight or view panel at door
- Window coverings as required for sun/glare control
- Skylights acceptable
- Ability to lock down doors

Furniture & Equipment

- HiDef digital display
- Digital display wall-mount bracket
- Clock
- (1) 4’ x 4’ tackboard
- Administrative office workstation
- Visitor chairs
- Lockable file cabinets

Special Considerations

- Ceiling material: acoustic ceiling tile
- Ceiling height: 9’-0” min.
- Wall material: painted gypsum board
- Floor material: vinyl composition tile or carpet tile

Sustainability

- Natural daylighting into the space
- Use of rapidly renewable materials to be used such as wheat board in casework
- Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

User Groups

Students
Staff

Support Spaces

None

Size

Varies

Sidelight or view panel at door
Window coverings as required for sun/glare control
Skylights acceptable
Ability to lock down doors
Space Types
Food Service

Description and Goal
The existing food service operation at the high school will be converted from its current format to a ‘food court’ concept. The preparation areas will need to be immediately adjacent to each of the designated food stations for easy stocking of food and drink items. Careful consideration should be given to the interior design to create an inviting dining facility that encourages students to use the space for not just eating but for collaboration and social interaction as well. An immediate connection to the outdoor central quad is desired to allow students the option to eat and congregate at the various social hubs now created or being envision for the campus.

Service to the facility will still be delivered from the parking lot immediately to the east of the building.
Social Dining

Activities & Uses
The Social / Dining space provides a large flexible single dining space for the campus community with the ability to accommodate collaborative learning and large group activities.

Size
6,000 sf

Occupants
400, Varies

User Groups
Students
Staff

Support Spaces
Table/chair storage
Restrooms

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression
• Drinking fountains
• Lighting: per IES Lighting Handbook guidelines

Technology
• Intercom speakers, VoIP
• Intercom speakers
• Sound reinforcement system
• Hardwired video outlet to permit taping of in-room activities, transmitting to on-campus or off-campus locations, and receiving video transmission from on-campus distribution system at digital display
• Wireless access capable for most computer communications/applications
• Hardwired data outlet at “point of sale”
• Doors & Windows
• Natural light desirable
• Window coverings as required for sunglare control and darkening of space for stage/assembly activities
• Skylights acceptable

Furniture & Equipment
• Round dining tables and stacking chairs
• Digital displays on each side of stage
• (2) digital display wall-mount brackets
• Clock
• Sound amplification system
• Meal accounting and inventory
• Satellite service areas for carts

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 22-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space

• Acoustic wass and/or ceiling panels as required for cafeteria and stage/assembly functions
• Room configuration/shape, acoustic treatment, and lighting to accommodate varied dining and assembly performances/activities
• Inviting, public/student-friendly atmosphere
• Direct access to outdoor dining and playground
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

301

300 | 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN
Space Types

Kitchen

Activities & Uses
Food storage, preparation, i.e. cooking and warming, and serving for student food service, 2000 students, large and small functions, and various events.

Building Systems
• Independent temperature control of area within flexible range set by district’s EMS system
• Room temperature sensor connected to campus EMS
• Fire alarm/suppression
• Drinking fountains
• Lighting: per IES Lighting Handbook guidelines
• Outlets for maintenance, mobile serving and/or cashier stations
• USB charging outlets in room

Technology
• Intercom speakers, VoIP
• Intercom speakers
• Sound reinforcement system
• Hardwired video outlet to permit taping of in-room activities, transmitting to on-campus or off-campus locations, and receiving video transmission from on-campus distribution system at digital display
• Wireless access capable for most computer communications/applications
• Doors & Windows
• Natural light desirable
• Window coverings as required for sun glare control and darkening of space for stage/assembly activities
• Skylights acceptable

Furniture & Equipment
• Servery
• Walk-in cooler
• Walk-in freezer
• Dry storage
• Dishwashing
• Snack Bar

Special Considerations
• Ceiling material: acoustic ceiling tile
• Ceiling height: 9’-0” min.
• Wall material: painted gypsum board
• Floor material: vinyl composition tile or carpet tile

Sustainability
• Natural daylighting into the space
• Use of rapidly renewable materials to be used such as wheat board in casework
• Design to integrate durable materials with emphasis on regionally available materials, low VOC-emitting and recycled materials to maintain healthy air quality

Size
1,500 sf

Occupants
Staff

User Groups
Staff

Support Spaces
Office
Staff toilet
Originally built in the 1950s as Peck Intermediate School, the campus was soon renamed to Foster A. Begg Intermediate School after a popular District Superintendent. It served as a "transition" site to house students while their respective campuses were being modernized in the late 1990s. The campus was re-opened as Manhattan Beach Preschool.
Assessment Summary

SITE IMPROVEMENTS
- Asphalt paving is in fair condition, with some cracking and surface deterioration.
- Concrete flatwork is in good to fair condition.
- Site drainage is a problem in some areas.
- Landscaping and irrigation are both in good condition.
- Retaining walls are deteriorated.
- Utility infrastructure varies significantly, with the sanitary sewer service being notably poor.
- The drop off configuration is poor, requiring visitors to cross the drop-off lane to reach the school.

ARCHITECTURE & STRUCTURE
- Roofs are in need of immediate repair.
- There are reported isolated areas of insect infestation and related wood framing deterioration.
- The rest of the structures and their architectural features, including walls and doors, are in good to fair condition.
- At least two buildings on the campus are included on the AB 300 Inventory (see Chapter 2), listed as Foster A Begg. Further research and evaluation by a structural engineer are necessary to determine which two buildings, and what the remediation should be.

BUILDING SYSTEMS
- Plumbing fixtures are in fair condition, and are mounted too high for preschool-age children.
- Domestic water and sanitary sewer lines are damaged and failing, with constant clogs and leaks.
- Electrical service is not adequate to current demands, and the site reports that there are frequent failures.
- Mechanical systems are in fair condition.

INTERIOR SPACES
- Classroom spaces are filled with light from clerestory and lower windows.
- Interior finishes are in generally fair condition.
- Glue-up ceiling tiles in many of the classrooms and other spaces have fallen, and should be replaced.

FURNITURE, FIXTURES & EQUIPMENT
- Casework and classroom furniture are in good condition.
- Window coverings vary but are in generally fair condition.
- Kitchen equipment is relatively new and in relatively good condition.
- Fire extinguishers are adequately sized and up-to-date with inspections.

OTHER STRUCTURES & IMPROVEMENTS
- Exterior identification signs and exterior lighting are in good condition.
- Perimeter fencing is in fair condition.
- Modular classrooms are in fair condition, but the portable storage sheds are in poor condition.
- Overall, the campus has fair levels of accessibility and code compliance.
- Technology infrastructure is poor, despite low-voltage modernization work in the 1990s.

The comments contained in this summary are specific to the Manhattan Beach Preschool campus. See Chapter 2 for additional general comments.
Proposed Site Summary

The Preschool master plan incorporates improvements to the parent drop-off area and parking to help alleviate congestion at this site. Additional parking will be added on Peck Avenue with the proposed construction of a new parking lot and a new stair and ramp for access to the campus. The existing multi-purpose building, administration and relocatable classrooms will be removed and replaced with new, adequately-sized facilities. Playfields will be improved upon with the proposed construction of a new turf playfield behind the new multi-purpose building. All existing buildings will be modernized or reconfigured to comply with the educational specifications for “Next Generation” learning.
HARD CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct new ramp and stair from parking lot off Peck Avenue, related grading</td>
<td>3,120 SF</td>
<td>$45.00 per SF</td>
<td>$140,400</td>
</tr>
<tr>
<td>Reconfigure parking and drop-off area at Peck Avenue</td>
<td>28,800 SF</td>
<td>$12.00 per SF</td>
<td>$345,600</td>
</tr>
<tr>
<td>Reconfigure and expand parking on Peck Avenue</td>
<td>100,500 SF</td>
<td>$18.00 per SF</td>
<td>$1,809,000</td>
</tr>
<tr>
<td>Install new secure fencing throughout site</td>
<td>250 SF</td>
<td>$45.00 per SF</td>
<td>$11,250</td>
</tr>
<tr>
<td>Add water storage tanks in parking lot</td>
<td>75,000 gal</td>
<td>$1.06 per gal</td>
<td>$79,500</td>
</tr>
</tbody>
</table>

Total HARD CONSTRUCTION COSTS: $2,858,089

NEW CONSTRUCTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct new restrooms</td>
<td>450 SF</td>
<td>$517.75 per SF</td>
<td>$231,985</td>
</tr>
<tr>
<td>Construct new classroom building</td>
<td>1,800 SF</td>
<td>$264.50 per SF</td>
<td>$470,100</td>
</tr>
<tr>
<td>Construct new outdoor learning area</td>
<td>12,200 SF</td>
<td>$15.00 per SF</td>
<td>$183,000</td>
</tr>
</tbody>
</table>

Total NEW CONSTRUCTION COSTS: $2,858,089

RECONFIGURATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1 EA</td>
<td>$0.00 per EA</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Total RECONFIGURATION COSTS: $0

MODERNIZATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modernize existing buildings per educational space</td>
<td>18,320 SF</td>
<td>$178.80 per SF</td>
<td>$3,275,616</td>
</tr>
<tr>
<td>Modernize existing areas</td>
<td>12,200 SF</td>
<td>$15.00 per SF</td>
<td>$183,000</td>
</tr>
<tr>
<td>Multi-purpose room</td>
<td>4,200 SF</td>
<td>$89.40 per SF</td>
<td>$375,480</td>
</tr>
</tbody>
</table>

Total MODERNIZATION COSTS: $3,834,096

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology System Updates</td>
<td>20,160 SF</td>
<td>$15.00 per SF</td>
<td>$302,400</td>
</tr>
</tbody>
</table>

Total MISCELLANEOUS COSTS: $302,400

SOFT COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Fees</td>
<td>5.00%</td>
<td>$482,201</td>
</tr>
<tr>
<td>Engineering Fees</td>
<td>3.00%</td>
<td>$289,320</td>
</tr>
<tr>
<td>CEQA (Classrooms per CR)</td>
<td>2.00%</td>
<td>$192,880</td>
</tr>
<tr>
<td>Survey & Reports</td>
<td>1.00%</td>
<td>$192,880</td>
</tr>
<tr>
<td>Furniture & Equipment (to support 21st century learning)</td>
<td>1.00%</td>
<td>$210,000</td>
</tr>
<tr>
<td>Escalation (Averaged)</td>
<td>3.50%</td>
<td>$2,103,539</td>
</tr>
</tbody>
</table>

Total SOFT COSTS SUBTOTAL: $1,563,722

IMMEDIATE NEEDS

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering</td>
<td>2.00%</td>
<td>$192,880</td>
</tr>
<tr>
<td>Building Seismic</td>
<td>2.00%</td>
<td>$192,880</td>
</tr>
<tr>
<td>Wall Structural Stud</td>
<td>0.35%</td>
<td>$5,000</td>
</tr>
<tr>
<td>Misc. ADA Improvements</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Accessible Parking</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Roof Flashing</td>
<td>0.56%</td>
<td>$8,125</td>
</tr>
<tr>
<td>Roof Replacement</td>
<td>0.35%</td>
<td>$5,000</td>
</tr>
<tr>
<td>Misc. ADA Improvements</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Roof Replacement</td>
<td>0.35%</td>
<td>$5,000</td>
</tr>
<tr>
<td>Miscellaneous Roofing</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Misc. ADA Improvements</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Roof Replacement</td>
<td>0.35%</td>
<td>$5,000</td>
</tr>
<tr>
<td>Miscellaneous Roofing</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Misc. ADA Improvements</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
<tr>
<td>Roof Replacement</td>
<td>0.35%</td>
<td>$5,000</td>
</tr>
<tr>
<td>Miscellaneous Roofing</td>
<td>0.14%</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

Total IMMEDIATE NEEDS COSTS SUBTOTAL: $1,111,535

TOTAL PROJECT COSTS FOR MANHATTAN BEACH

- **Hard Construction Costs:** $2,858,089
- **New Construction Costs:** $2,858,089
- **Reconfiguration Costs:** $0
- **Modernization Costs:** $3,834,096
- **Miscellaneous Costs:** $302,400
- **Soft Costs:** $1,563,722
- **Immediate Needs Costs:** $1,111,535

Total Project Costs: $11,207,737
Grand View Elementary School

455 24th Street
Manhattan Beach, CA 90266

Grand View Elementary is located four blocks from the Pacific Ocean, and is sited on a former sand dune. The first buildings were built in 1939 by the Works Progress Administration, and the campus features an Art Deco design. Grand View was the only Manhattan Beach public school located west of the Pacific Coast Highway at the time of construction. In the 1960s, School No. 9 (Ladera) was built on the northwestern slope of the sand dune and operated as a separate elementary school for several decades before being shuttered in the 1990s. It is now considered a part of the Grand View campus, and is partially used by Grand View Elementary students and partially leased to a private school.

The Grand View part of the campus was renovated in 2000-01, retaining its Art Deco design elements while expanding capacity through relocatable classroom buildings and various new site features including a small amphitheater and a garden plot.

Grand View's and Ladera campuses are considered one campus, with the lower “Ladera” portion being part of the Grand View Elementary School campus.

<table>
<thead>
<tr>
<th>DSA Certified Projects</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project ID Number</td>
<td>Project Description</td>
<td>Year</td>
<td>Status</td>
</tr>
<tr>
<td>03-46945</td>
<td>Modernization</td>
<td>1985</td>
<td>Closed</td>
</tr>
<tr>
<td>03-59993</td>
<td>Modernization</td>
<td>1993</td>
<td>Closed</td>
</tr>
<tr>
<td>03-60388</td>
<td>Modernization</td>
<td>1993</td>
<td>Closed</td>
</tr>
<tr>
<td>03-103325</td>
<td>Modernization</td>
<td>2000</td>
<td>Closed</td>
</tr>
<tr>
<td>03-104335</td>
<td>Relocatables</td>
<td>2001</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Projects Not Certified by DSA

None Found

Buildings on AB 300 Inventory

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Current Building Description</th>
<th>Application Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>14753</td>
<td>School 9 (Ladera)</td>
<td>1956</td>
</tr>
</tbody>
</table>
Grand View Elementary School
Existing Master Site Plan

EXISTING

Grand View Elementary School

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Improvements</td>
<td>C–</td>
<td>1.52</td>
</tr>
<tr>
<td>Architecture & Structure</td>
<td>C–</td>
<td>1.57</td>
</tr>
<tr>
<td>Building Systems</td>
<td>D+</td>
<td>1.36</td>
</tr>
<tr>
<td>Interior Spaces</td>
<td>D+</td>
<td>1.36</td>
</tr>
<tr>
<td>Furnishings, Fixtures & Equipment</td>
<td>C</td>
<td>1.75</td>
</tr>
<tr>
<td>Other Structures & Improvements</td>
<td>D+</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Grand View Elementary School

<table>
<thead>
<tr>
<th>Component</th>
<th>2014 Existing</th>
<th>Site Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>728</td>
<td>640</td>
</tr>
<tr>
<td>Portable Space</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Total Square Feet</td>
<td>68,214</td>
<td>64,000</td>
</tr>
<tr>
<td>Site Acres</td>
<td>11.2 acres</td>
<td>9.2 acres</td>
</tr>
<tr>
<td>Buildings & Ground Area</td>
<td>6.3 acres</td>
<td>5.5 acres</td>
</tr>
<tr>
<td>Playfield & Hardcourt Area</td>
<td>3.6 acres</td>
<td>3.2 acres</td>
</tr>
<tr>
<td>Parking Area</td>
<td>73.4 acres</td>
<td>67.2 acres</td>
</tr>
<tr>
<td>EDR Recommended</td>
<td>12.1 acres</td>
<td>12.1 acres</td>
</tr>
</tbody>
</table>

Instruction Space Capacity

<table>
<thead>
<tr>
<th>Type</th>
<th>Conditions</th>
<th>Existing SqFt</th>
<th>EDR Recommend SqFt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Learning Center</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Reading Lab</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Science Lab</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Music</td>
<td>5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Multi-purpose Room</td>
<td>10</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Grand View Elementary School

<table>
<thead>
<tr>
<th>Facility</th>
<th>Existing Square Feet</th>
<th>Proposed Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>1,866</td>
<td>2,905</td>
</tr>
<tr>
<td>Food Service</td>
<td>1,395</td>
<td>2,395</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>1,866</td>
<td>2,905</td>
</tr>
</tbody>
</table>

Current Master Site Plan

- Administration
- Classrooms
- Kindergarten
- Specialty Classroom
- Multi-purpose Room
- Food Service
- Abandoned
- Leased Facilities

Overall Grade

1.50

Grading by Category

- Site Improvements: C–
- Architecture & Structure: C–
- Building Systems: D+
- Interior Spaces: D+
- Furnishings, Fixtures & Equipment: C
- Other Structures & Improvements: D+
Assessment Summary

Site Improvements

Grand View:
- Asphalt paving and concrete flatwork are in good condition.
- Parking is provided at a good ratio for the school size, but the drop-off configuration could be improved to re-route the current marked cross-walk from the parking area.
- Sub-grade utilities appear to be adequate.
- Drainage is adequate.

Ladera - Lower Portion of GV:
- A mold assessment should be performed.
- There is evidence of erosion and ponding on the site.

Architecture & Structure

Grand View:
- Isolated termite damage has been reported.
- Roofing, flashing and exterior finishes are in fair condition and should be replaced and patched within five years.
- Windows and doors are in good condition.
- Handrails are deteriorating and should be refurbished.

Ladera - Lower Portion of GV:
- Visible voids at exterior stairs and cracks in the concrete slab indicate foundation undermining.
- Roofing is in extremely poor condition, with active leaks, deck deterioration, and dry rot in areas.
- Guardrails are in poor condition.
- Soffit vents at the Montessori School should be replaced.
- The campus is on the AB 300 inventory (see Chapter 2).

Building Systems

Grand View:
- Plumbing and gas systems and fixtures are in good condition.
- Electrical system is adequately sized, but housing for switchgear and meters should be replaced.

Ladera - Lower Portion of GV:
- Plumbing fixtures appear to be original and are in fair condition, though they do not comply with ADA requirements.
- The gas distribution system, the electrical distribution system and switchgear housing require replacement.

Interior Spaces

Grand View:
- Interior finishes are in fair condition and will require replacement.

Ladera - Lower Portion of GV:
- Interior finishes are in fair to poor condition and will require replacement.
- Ceiling tiles in some areas at the Montessori school are water-damaged.

Furniture, Fixtures & Equipment

Grand View:
- Window coverings and lighting fixtures are in fair to poor condition and should be replaced.
- Classroom furniture and fire extinguishers are in good condition.
- Kitchen equipment is in fair condition and may require replacement.
- HVAC equipment is in fair condition.

Ladera - Lower Portion of GV:
- Heating equipment, natural gas service, plumbing systems, and electrical equipment are in poor condition and will require replacement.
- Lighting fixtures are outdated and also require replacement.

Other Structures & Improvements

Grand View:
- Exterior identification signs are in good condition.
- Perimeter fencing is in fair condition.
- Modular classrooms and storage sheds are in fair condition, with some visible signs of deterioration.
- The campus has fair levels of accessibility.

Ladera - Lower Portion of GV:
- Exterior identification signs are in good condition.
- Exterior lighting, perimeter fencing, modular classrooms and portable storage sheds are in fair condition.
- The campus has poor levels of accessibility.

The comments contained in this summary are specific to the Grand View/Ladera campus. See Chapter 2 for additional general comments.
Proposed Site Summary
The existing multi-story Ladera (lower portion of Grand View) classroom building are proposed to be removed along with the existing multi-purpose building (PAC). Additionally, the existing kindergarten classrooms, multi-purpose building and relocatable classrooms will also be removed. Construction of new classrooms and a larger multi-purpose building will be constructed in the playfields east of the existing finger plan buildings. There is significant grading associated with the proposed changes to maximize the usable site area for additional playfields and hard courts due to the substantial grade change across the site. The ‘dog park’ will be renovated and connected to the main campus for additional play space as well.

The existing buildings are proposed to be modernized or reconfigured to comply with the educational specifications for “Next Generation” learning. Existing classrooms will be reconfigured into an “Innovation Suite” for the campus. The existing wing of the Ladera campus (lower portion of Grand View), now being occupied by the Montessori program, is slated to become the new kindergarten complex for the school. Parking and drop-off area will be expanded to improve traffic and student safety. The area at the east side of the campus adjacent to Vista Drive, once the relocatable classrooms are removed, will become the campus/community garden and assigned staff parking lot.

EXISTING

Grand View Elementary School

<table>
<thead>
<tr>
<th>Existing Condition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings & Ground Area</td>
<td>6,3 acres</td>
</tr>
<tr>
<td>Playfield & Hardcourt Area</td>
<td>3,8 acres</td>
</tr>
<tr>
<td>Kindergarten Classrooms</td>
<td>11.2 acres</td>
</tr>
<tr>
<td>Multi-purpose Room</td>
<td>37.6 acres</td>
</tr>
<tr>
<td>CDE Recommended</td>
<td>12.1 acres</td>
</tr>
</tbody>
</table>

Instruction Space Capacity

<table>
<thead>
<tr>
<th>Instruction Area</th>
<th>Existing</th>
<th>Existing</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
</tr>
<tr>
<td>Reading Lab</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
</tr>
<tr>
<td>Music</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
<td>1,040 sq ft</td>
</tr>
</tbody>
</table>

NEW

Grand View Elementary School

<table>
<thead>
<tr>
<th>New Space</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Square Feet</td>
<td>711</td>
</tr>
<tr>
<td>Kindergarten Classrooms</td>
<td>0</td>
</tr>
<tr>
<td>Multi-purpose Room</td>
<td>11.2 acres</td>
</tr>
<tr>
<td>Playfield & Hardcourt Area</td>
<td>37.6 acres</td>
</tr>
<tr>
<td>Kindergarten Classrooms</td>
<td>11.2 acres</td>
</tr>
<tr>
<td>Multi-purpose Room</td>
<td>37.6 acres</td>
</tr>
<tr>
<td>CDE Recommended</td>
<td>12.1 acres</td>
</tr>
</tbody>
</table>

Instruction Space Capacity

<table>
<thead>
<tr>
<th>Proposed Master Plan</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>1,040 sq ft</td>
</tr>
<tr>
<td>Reading Lab</td>
<td>1,040 sq ft</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>1,040 sq ft</td>
</tr>
<tr>
<td>Music</td>
<td>1,040 sq ft</td>
</tr>
</tbody>
</table>

Site Plan

- **Innovation Suite**: Maker Space, Science Lab, Anti-Technology Classroom
- **Water Space**: 1
- **Science Lab**: 1
- **Anti-Technology Classroom**: 1
- **Library**: 1
- **EDP/PE/Art Center**: 3

Grand View Educational Assembly for World-Class Facilities

<table>
<thead>
<tr>
<th>Existing Space</th>
<th>Proposed Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose Room</td>
<td>3,644 sq ft</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>2,676 sq ft</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Master Planning Guidelines

Learn Centered
- Nurture the Whole Child

Community
- Matter

Leverage
- Technology

Sustainability
- Aesthetics

Site Work Costs

<table>
<thead>
<tr>
<th>Scope Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.96'' Reconfigure and expand existing parking lot and off site area</td>
<td>9</td>
<td>999</td>
<td>999</td>
</tr>
<tr>
<td>136.96'' Construct new turf play field at north</td>
<td>55,700 SF</td>
<td>$15.00 per SF</td>
<td>$835,500</td>
</tr>
<tr>
<td>137.96'' Construct new play equipment area</td>
<td>4,025 SF</td>
<td>$14.00 per SF</td>
<td>$56,350</td>
</tr>
<tr>
<td>138.96'' Install new secure fencing throughout site</td>
<td>4,700 LF</td>
<td>$65.00 per LF</td>
<td>$305,500</td>
</tr>
<tr>
<td>139.96'' Construct community gardens</td>
<td>15,800 SF</td>
<td>$15.00 per SF</td>
<td>$237,000</td>
</tr>
<tr>
<td>140.96'' Reconfigure and expand existing hard play area</td>
<td>900 SF</td>
<td>$517.75 per SF</td>
<td>$465,975</td>
</tr>
<tr>
<td>141.96'' Construct storm water retention system to provide water for irrigation</td>
<td>1,707 CY</td>
<td>$14.00 per CY</td>
<td>$23,898</td>
</tr>
<tr>
<td>142.96'' Construct new turf play field at southeast</td>
<td>13,182 SF</td>
<td>$15.00 per SF</td>
<td>$197,730</td>
</tr>
<tr>
<td>143.96'' Construct new stair and ramp to mid grade level - two locations</td>
<td>3,200 SF</td>
<td>$45.00 per SF</td>
<td>$144,000</td>
</tr>
</tbody>
</table>

New Construction Costs

<table>
<thead>
<tr>
<th>Scope Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.96'' Construct new multi-purpose building</td>
<td>10,000 SF</td>
<td>$321.48 per SF</td>
<td>$3,214,800</td>
</tr>
<tr>
<td>145.96'' Construct new two-story classroom building</td>
<td>15,360 SF</td>
<td>$349.44 per SF</td>
<td>$5,367,398</td>
</tr>
<tr>
<td>146.96'' Construct new two-story classroom building</td>
<td>13,380 SF</td>
<td>$349.44 per SF</td>
<td>$4,675,507</td>
</tr>
<tr>
<td>147.96'' Construct new outdoor learning areas</td>
<td>3,600 SF</td>
<td>$7.00 per SF</td>
<td>$25,200</td>
</tr>
<tr>
<td>148.96'' Construct new park restroom and storage building</td>
<td>7,000 SF</td>
<td>$8.50 per SF</td>
<td>$59,500</td>
</tr>
</tbody>
</table>

Reconfiguration Costs

<table>
<thead>
<tr>
<th>Scope Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>149.96'' Demolish PAC/multi-purpose building off site</td>
<td>4,020 SF</td>
<td>$7.00 per SF</td>
<td>$28,140</td>
</tr>
<tr>
<td>150.96'' Demolish multi-purpose and food service building</td>
<td>13,200 SF</td>
<td>$7.00 per SF</td>
<td>$92,400</td>
</tr>
<tr>
<td>151.96'' Demolish Ladera administration building</td>
<td>1,425 SF</td>
<td>$7.00 per SF</td>
<td>$9,975</td>
</tr>
<tr>
<td>152.96'' Demolish relocatables</td>
<td>16,320 SF</td>
<td>$7.00 per SF</td>
<td>$114,240</td>
</tr>
</tbody>
</table>

Modernization Costs

<table>
<thead>
<tr>
<th>Scope Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>153.96'' Modernize existing instructional space</td>
<td>6,618 SF</td>
<td>$178.80 per SF</td>
<td>$1,183,298</td>
</tr>
<tr>
<td>154.96'' Modernize existing kindergarten classrooms</td>
<td>4,484 SF</td>
<td>$178.80 per SF</td>
<td>$801,739</td>
</tr>
</tbody>
</table>

Miscellaneous Costs

<table>
<thead>
<tr>
<th>Scope Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>155.96'' Technology System Upgrades</td>
<td>26,880 SF</td>
<td>$15.00 per SF</td>
<td>$403,200</td>
</tr>
</tbody>
</table>

Hard & Soft Costs Subtotal

- **Total Project Costs:** $10,307,898
- **% of Total Costs:** 2.92% of Hard Costs

Summary

- **Total Hard Costs:** $24,842,655 (64.49% of Total Costs)
- **Total Soft Costs:** $5,605,245 (15.51% of Total Costs)
- **Total Project Costs:** $28,452,200 (73.86% of Total Costs)
Meadows Elementary School

Meadows Elementary School opened in 1951 in the center of East Manhattan at the corner of Meadows Avenue and Peck Avenue. When the school first opened the campus included 14 classrooms for 420 students. In 1997 the school was renovated with Measure A’s bond monies.

In 2001, Meadows celebrated its 50th Anniversary. Today Meadows services grades K through five with an enrollment of about 500 students. The general class size in kindergarten is about 20 students, and about 30 for the fourth and fifth grades. The school is a California Distinguished School that has demonstrated commitment to academic excellence.

Meadows Elementary School encourages students and parents to be environmentally conscious and has deemed Wednesdays a “Walk to School” day. It brings in volunteers to talk to students about nutrition and healthy living, and offers students the opportunity to plant and harvest their own produce in an on-campus garden.

Meadows also offers a Young At Art program, and a unique cultural arts program that exposes students to the history, customs, and performing arts of other countries and cultures.

DSA Certified Projects

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-56144</td>
<td>Modernization</td>
<td>1991</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Projects Not Certified by DSA

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-100469</td>
<td>Modernization</td>
<td>1998</td>
<td>Closed</td>
</tr>
<tr>
<td>03-102330</td>
<td>Relocatables</td>
<td>1996</td>
<td>Closed</td>
</tr>
<tr>
<td>03-113558</td>
<td>Relocatables</td>
<td>2010</td>
<td>Pending</td>
</tr>
</tbody>
</table>

Buildings on AB 300 Inventory

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Current Building Description</th>
<th>Application Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>13199</td>
<td>Unit E, Rooms 16-21</td>
<td>1955</td>
</tr>
<tr>
<td>13199</td>
<td>Not Determined</td>
<td>1955</td>
</tr>
</tbody>
</table>
Meadows Elementary School
Existing Building Use Plan

Existing Site Condition
Grade Configuration: K-5
Year Built: 1959
Year Modernized: 1999

EXISTING
Meadows Elementary School

<table>
<thead>
<tr>
<th>Building</th>
<th>Existing</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Total Square Feet</td>
<td>37,355 sf</td>
<td>47,000 sf</td>
</tr>
<tr>
<td>Site Area</td>
<td>7.5 acres</td>
<td></td>
</tr>
<tr>
<td>Building and Ground Area</td>
<td>13.8 acres</td>
<td></td>
</tr>
<tr>
<td>Area Per Student (ft²)</td>
<td>372.1 ft²</td>
<td></td>
</tr>
<tr>
<td>Furniture, Fixtures & Equipment</td>
<td>B– 2.63</td>
<td>B– 2.63</td>
</tr>
<tr>
<td>Other Structures & Improvements</td>
<td>B– 2.72</td>
<td>B– 2.71</td>
</tr>
<tr>
<td>Existing Legend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>classrooms</td>
<td>Kindergarten</td>
</tr>
</tbody>
</table>

Overall Grade: 2.52

GRADING BY CATEGORY
- Site Improvements: B– 2.51
- Architecture & Structure: B– 2.57
- Building Systems: C+ 2.43
- Interior Spaces: C+ 2.29
- Furnishings, Fixtures & Equipment: B– 2.63
- Other Structures & Improvements: B– 2.71

Site Improvements
Architectural & Structural
Building Systems
Interior Spaces
Furnishings, Fixtures & Equipment
Other Structures & Improvements

328 | 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN

329
Assessment Summary

Site Improvements
- Public utility service appears adequate for the property and is in mostly good condition.
- Drop-off configuration is poor with little space for stacking and a location immediately outside the doors to the Kindergarten classrooms.
- Asphalt paving and concrete flatwork are in good condition.
- Site drainage has minor problems in specific areas.
- Retaining walls, landscaping and irrigation are in good condition.
- Play fields appear to be heavily used but are in generally good condition.

Architecture & Structure
- The concrete structures show no signs of instability.
- Roofs are in good to fair condition, and should be replaced in the next five years.
- Exterior walls, doors and windows, and railings are all in good condition.
- At least one building - Unit E (Rooms 16-21) is on the AB 300 list (see Chapter 2). Since most of the buildings on the campus are of similar construction, a structural engineer should be engaged to do a complete analysis of each building on the campus.

Building Systems
- The plumbing system and fixtures are in fair condition, although pressure is reportedly inadequate.
- The gas and electrical systems are in fair condition and will require routine maintenance.
- The fire alarm system is manual, and should be replaced with a fully automatic system during modernization.

Interior Spaces
- Interior finishes are in good to fair condition. Carpet and vinyl tile flooring replacement and painting will be necessary within ten years.
- Glue-up acoustic ceiling tiles are falling in specific locations and will need to be repaired and replaced.

Furniture, Fixtures & Equipment
- Casework and classroom furniture are in fair to good condition.
- Window coverings vary but are in generally fair condition.
- Kitchen equipment is relatively new and used for warming and final preparation, rather than actual cooking, leading to low levels of use and relatively good condition.
- Heating equipment is in good condition.
- Fire extinguishers are adequately sized and up-to-date with inspections.

Other Structures & Improvements
- Exterior identification signs, exterior lighting and perimeter fencing are in good condition.
- Modular classrooms are in fair condition, but the portable storage sheds are in poor condition.
- Overall, the campus has good levels of accessibility and code compliance.
- Modernization work in the 1990s provided a fair level of technology infrastructure.

The comments contained in this summary are specific to the Meadows campus. See Chapter 2 for additional general comments.
Proposed Site Summary

The proposed removal of the existing multi-purpose building and expansion of the drop-off/guest parking at the front of the school will help minimize the traffic impact on the neighborhood. The construction of a new two-story classroom building, consolidating the existing relocatables and needed additional specialty classrooms, makes better utilizing of the site. Construction of a new staff parking lot and reconfiguring the play areas better utilizes the usable site area. A new large multi-purpose building will allow for larger gatherings and instructional space.

The remaining buildings are proposed to be modernized or reconfigured to comply with the educational specifications for "Next Generation" learning. A new kindergarten complex will be reconfigured in an existing classroom building in order to expand to full-day sessions. The existing kindergarten buildings will be reconfigured into the "Innovation Suite" for the campus.

EXISTING

Meadows Elementary School

<table>
<thead>
<tr>
<th>Space Description</th>
<th>Existing SqFt</th>
<th>CODE Recommended SqFt</th>
<th>Master Plan Proposed SqFt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>7,355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cafeteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnasium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-purpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Education</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW

Meadows Elementary School

<table>
<thead>
<tr>
<th>Space Description</th>
<th>Existing SqFt</th>
<th>CODE Recommended SqFt</th>
<th>Master Plan Proposed SqFt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>7,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cafeteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnasium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-purpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Education</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GUIDING PRINCIPLES

<table>
<thead>
<tr>
<th>Guiding Principle</th>
<th>LC</th>
<th>NC</th>
<th>CP</th>
<th>AM</th>
<th>TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learner Centered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurture the Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner Matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesthetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HARD CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Site Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1. Reconfigure and expand drop-off parking lot</td>
<td>25,000 SF</td>
<td>$12.00 per SF</td>
<td>$300,000</td>
</tr>
<tr>
<td>S2. Construct new play equipment area</td>
<td>3,500 SF</td>
<td>$14.00 per SF</td>
<td>$49,000</td>
</tr>
<tr>
<td>S3. Install new secure fencing throughout site</td>
<td>2,400 LF</td>
<td>$65.00 per LF</td>
<td>$156,000</td>
</tr>
<tr>
<td>S4. Construct new parking lot</td>
<td>24,160 SF</td>
<td>$12.00 per SF</td>
<td>$289,920</td>
</tr>
<tr>
<td>S5. Reconfigure existing turf play fields</td>
<td>49,500 SF</td>
<td>$15.00 per SF</td>
<td>$742,500</td>
</tr>
<tr>
<td>S6. Reconfigure existing asphalt play fields</td>
<td>33,200 SF</td>
<td>$9.50 per SF</td>
<td>$315,400</td>
</tr>
<tr>
<td>S7. Construct storm water retention system to support 21st century learning</td>
<td>150,000 GAL</td>
<td>$1.06 per GAL</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

NEW CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>New Construction</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1. Construct new multi-purpose building</td>
<td>9,200 SF</td>
<td>$483.39 per SF</td>
<td>$4,447,188</td>
</tr>
<tr>
<td>N2. Construct new courtyard for multi-purpose building</td>
<td>22,200 SF</td>
<td>$14.00 per SF</td>
<td>$310,800</td>
</tr>
<tr>
<td>N3. Construct new outdoor learning areas</td>
<td>5,370 SF</td>
<td>$174.72 per SF</td>
<td>$938,246</td>
</tr>
<tr>
<td>N4. Construct new park restroom and storage</td>
<td>900 SF</td>
<td>$517.75 per SF</td>
<td>$465,975</td>
</tr>
</tbody>
</table>

RECONFIGURATION COSTS

<table>
<thead>
<tr>
<th>Reconfiguration</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1. Reconfigure existing classroom building</td>
<td>6,050 SF</td>
<td>$227.72 per SF</td>
<td>$1,377,706</td>
</tr>
<tr>
<td>R2. Reconfigure existing kindergarten building (including small special education classroom)</td>
<td>3,900 SF</td>
<td>$227.72 per SF</td>
<td>$888,108</td>
</tr>
<tr>
<td>R3. Reconfigure existing SDC and administration support into new library addition</td>
<td>2,400 SF</td>
<td>$227.72 per SF</td>
<td>$546,528</td>
</tr>
</tbody>
</table>

MODERNIZATION COSTS

<table>
<thead>
<tr>
<th>Modernization</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1. Modernize existing instructional spaces and administration per educational phase</td>
<td>11,480 SF</td>
<td>$178.80 per SF</td>
<td>$2,052,624</td>
</tr>
<tr>
<td>M2. Modernize existing outdoor learning areas</td>
<td>10,050 SF</td>
<td>$89.40 per SF</td>
<td>$898,470</td>
</tr>
</tbody>
</table>

DEMOLITION COSTS

<table>
<thead>
<tr>
<th>Demolition</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1. Demolish existing multi-purpose building</td>
<td>5,000 SF</td>
<td>$7.00 per SF</td>
<td>$35,000</td>
</tr>
</tbody>
</table>

MISCELLANEOUS COSTS

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1. Technology System Upgrades</td>
<td>24,000 SF</td>
<td>$15.00 per SF</td>
<td>$360,000</td>
</tr>
</tbody>
</table>

SOFT PROJECT COSTS

<table>
<thead>
<tr>
<th>Soft Project</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Fees</td>
<td>$935,439</td>
</tr>
<tr>
<td>Engineering Fees</td>
<td>$561,264</td>
</tr>
<tr>
<td>Interim Housing (Classrooms per Year) CR/yr</td>
<td>$0</td>
</tr>
<tr>
<td>Topographic Survey & Soils Report per site</td>
<td>$100,000</td>
</tr>
<tr>
<td>Construction Testing/Inspection</td>
<td>$374,176</td>
</tr>
<tr>
<td>Plan Check (DSA & Other Agencies)</td>
<td>$187,088</td>
</tr>
<tr>
<td>Furniture & Equipment (to support 21st century learning)</td>
<td>$250,000</td>
</tr>
</tbody>
</table>

IMMEDIATE NEEDS COSTS

<table>
<thead>
<tr>
<th>Immediate Need</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termite/Vermin/Animal Infestation</td>
<td>$5,500</td>
</tr>
<tr>
<td>Civil Engineer Utility Study per EA</td>
<td>$5,500</td>
</tr>
<tr>
<td>ADA Curb Cut, Concrete, 6" rise per EA</td>
<td>$500</td>
</tr>
<tr>
<td>Replace Acoustical Ceiling Tiles - partial per 2,500 SF</td>
<td>$37,500</td>
</tr>
<tr>
<td>Duct Furnace (no AC), Roof-Mounted per EA</td>
<td>$5,310</td>
</tr>
</tbody>
</table>

TOTAL PROJECT COSTS FOR MEADOWS ES

<table>
<thead>
<tr>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$28,446,160</td>
</tr>
</tbody>
</table>
Pacific Elementary School
1200 Pacific Avenue
Manhattan Beach, CA 90266

Pacific Elementary was built in 1948 around the site of Center Street School, Manhattan Beach's original public school that opened in 1914, absorbing several of its predecessor’s buildings into the new campus in the process.

<table>
<thead>
<tr>
<th>DSA Certified Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project ID Number</td>
</tr>
<tr>
<td>03-105080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projects Not Certified by DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project ID Number</td>
</tr>
<tr>
<td>03-103391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buildings on AB 300 Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>None Found</td>
</tr>
</tbody>
</table>
Assessment Summary

Site Improvements
- Asphalt paving and concrete flatwork are in good to fair condition, with some heaving and cracking in the Adult School area.
- Landscaping and irrigation are in good condition, as are retaining walls.
- The play fields are heavily used but in generally good condition.
- Where provided, play structures are in fair condition.
- Drainage is good, with localized trouble areas at paved walkways, particularly at the main entrance to the campus.

Architecture & Structure
- The wood-framed structures appear to be stable.
- There is evidence of termite damage in the wood trim in several buildings, and reported termite damage in wood framing.
- Built-up roofs have active leaks, and will need replacement within the five years, and some flashing has rusted through and needs immediate replacement.
- Exterior plaster walls are in good to fair condition, and will require patching.
- Hollow metal doors and frames are in good condition, as is the hardware.
- Sliding glass doors are in good condition, but are difficult to operate.

Building Systems
- Plumbing and gas systems appear to be in fair condition with adequate pressure.
- Plumbing fixtures are in good condition.
- Sewer backup has been reported.
- Electrical service appears adequate.
- Heaters are in good condition.

Interior Spaces
- Interior finishes are in good condition and will require routine maintenance.
- There have been reported mold conditions in the past, and we recommend further study by an industrial hygienist.

Furniture, Fixtures & Equipment
- Kitchen equipment is in good condition and will require routine replacement.
- Casework and classroom furniture are in fair to good condition.
- Window coverings vary but are in generally fair condition.
- Fire extinguishers are adequately sized and up-to-date with inspections.

Other Structures & Improvements
- Exterior identification signs are in fair condition, and should be replaced within five years.
- Exterior lighting is in good condition.
- Perimeter fencing is in fair condition.
- Modular classrooms and portable storage sheds are also in fair condition.
- The campus has fair levels of accessibility and code compliance.
- Modernization work in the 1990s provided a fair level of technology infrastructure, but its aesthetics could be improved.

The comments contained in this summary are specific to the Pacific campus. See Chapter 2 for additional general comments.
Proposed Site Summary

The ‘front door’ for this campus will be relocated from Pacific Avenue to 14th Street, providing a drop-off area to enhance student safety. The ‘classic, original’ campus building will be reconfigured into new administration space and a library for the campus. The existing entry ‘court’ and the surrounding buildings will become the new kindergarten complex with the court being converted to the new kindergarten play yard.

A new multi-purpose building is proposed to be constructed near the new drop-off area directly adjacent to the modified play areas. The remaining buildings are proposed to be modernized or reconfigured to comply with the educational specifications for “Next Generation” learning. The buildings currently utilized by the Beach Cities program will be reconfigured to accommodate additional classrooms and an “Innovation Suite” for the campus.
MASTER PLANNING GUIDING PRINCIPLES

- Learner Centered
- Nurture the Community
- Leverage Technology
- Sustainability
- Aesthetics

SCoping Description × Cost Total Cost

HARD CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconfigure and expand existing parking area</td>
<td>30,400 SF</td>
<td>$12.00 per SF</td>
<td>$364,800</td>
</tr>
<tr>
<td>Construct new play equipment area</td>
<td>3,400 SF</td>
<td>$14.00 per SF</td>
<td>$47,600</td>
</tr>
<tr>
<td>Construct new stair and ramp between campus levels - two locations</td>
<td>1,824 SF</td>
<td>$45.00 per SF</td>
<td>$82,080</td>
</tr>
<tr>
<td>Construct new single level hard court area</td>
<td>59,000 SF</td>
<td>$9.50 per SF</td>
<td>$560,500</td>
</tr>
<tr>
<td>Construct new drop-off and visitor parking (to become the new campus entrance)</td>
<td>43,000 SF</td>
<td>$12.00 per SF</td>
<td>$516,000</td>
</tr>
<tr>
<td>Construct new asphalt playfield</td>
<td>49,900 SF</td>
<td>$9.50 per SF</td>
<td>$474,050</td>
</tr>
<tr>
<td>Grading for new asphalt playfield - cut/fill</td>
<td>12,151 CY</td>
<td>$14.00 per CY</td>
<td>$170,114</td>
</tr>
<tr>
<td>Harvest rain water for landscape irrigation</td>
<td>150,000 GAL</td>
<td>$1.06 per GAL</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

NEW CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconfigure existing library, makerspace (original campus building) into a new administration building and adjacent classroom building - building the new kindergarten complex</td>
<td>9,000 SF</td>
<td>$227.72 per SF</td>
<td>$2,049,480</td>
</tr>
<tr>
<td>Reconfigure existing classroom spaces into new "special education suite"</td>
<td>2,400 SF</td>
<td>$227.72 per SF</td>
<td>$546,528</td>
</tr>
<tr>
<td>Reconfigure existing (Adult Education) building into new "Innovation Suite"</td>
<td>6,525 SF</td>
<td>$227.72 per SF</td>
<td>$1,485,873</td>
</tr>
</tbody>
</table>

RECONFIGURATION COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modernize existing instructional spaces per educational specifications</td>
<td>25,020 SF</td>
<td>$178.80 per SF</td>
<td>$4,473,576</td>
</tr>
<tr>
<td>Modernize existing outdoor learning areas</td>
<td>15,370 SF</td>
<td>$89.40 per SF</td>
<td>$1,374,078</td>
</tr>
</tbody>
</table>

MODERNIZATION COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolish existing multi-purpose room</td>
<td>5,450 SF</td>
<td>$7.00 per SF</td>
<td>$38,150</td>
</tr>
<tr>
<td>Remove existing relocatables</td>
<td>9,600 SF</td>
<td>$7.00 per SF</td>
<td>$67,200</td>
</tr>
</tbody>
</table>

DEMOLITION COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology System Upgrades</td>
<td>25,920 SF</td>
<td>$15.00 per SF</td>
<td>$388,800</td>
</tr>
<tr>
<td>Furniture & Equipment (to support 21st century learning)</td>
<td>27 CR</td>
<td>$10,000 per CR</td>
<td>$270,000</td>
</tr>
</tbody>
</table>

MISCELLANEOUS COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Fees</td>
<td>5.00%</td>
<td>$524,906</td>
<td></td>
</tr>
<tr>
<td>Engineering Fees</td>
<td>3.00%</td>
<td>$314,944</td>
<td></td>
</tr>
<tr>
<td>Pre-Construction/Legal/Planning/CEQA</td>
<td>2.00%</td>
<td>$209,963</td>
<td></td>
</tr>
<tr>
<td>Interim Housing (Classrooms per Year)</td>
<td>CR/yr</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Topographic Survey & Soils Report</td>
<td>1 site</td>
<td>$100,000 per site</td>
<td>$100,000</td>
</tr>
<tr>
<td>Construction Testing/Inspection</td>
<td>2.00%</td>
<td>$209,963</td>
<td></td>
</tr>
<tr>
<td>Plan Check (DSA & Other Agencies)</td>
<td>1.00%</td>
<td>$104,981</td>
<td></td>
</tr>
<tr>
<td>Termite/Vermin/Infestation Consultant</td>
<td>1 EA</td>
<td>$5,500</td>
<td></td>
</tr>
<tr>
<td>Civil Engineer Utility Study</td>
<td>1 EA</td>
<td>$5,500</td>
<td></td>
</tr>
<tr>
<td>Industrial Hygienist for Mold and Indoor Air Quality</td>
<td>1 EA</td>
<td>$5,000</td>
<td></td>
</tr>
<tr>
<td>Van Accessible Parking Sign</td>
<td>1 EA</td>
<td>$480</td>
<td></td>
</tr>
<tr>
<td>Accessible Parking Sign</td>
<td>4 EA</td>
<td>$220</td>
<td></td>
</tr>
<tr>
<td>Roof Flashing</td>
<td>2,500 LF</td>
<td>$3.25 per LF</td>
<td>$8,125</td>
</tr>
<tr>
<td>Roof Leaks, Minor Repairs</td>
<td>10 EA</td>
<td>$500</td>
<td></td>
</tr>
</tbody>
</table>

IMMEDIATE NEEDS SUBTOTAL

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$6,697</td>
<td></td>
</tr>
</tbody>
</table>

SOFT PROJECT COSTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Cost Allowance</td>
<td>10.00%</td>
<td>$3,349</td>
<td></td>
</tr>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$6,697</td>
<td></td>
</tr>
</tbody>
</table>

IMMEDIATE NEEDS COSTS SUBTOTAL

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Contingency</td>
<td>10.00% of total</td>
<td>$1,619,151</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL PROJECT COSTS FOR PACIFIC ES

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$16,191,511</td>
</tr>
</tbody>
</table>
Originally known as Curtis Street School when it opened in 1955, this campus was renamed after long-time District Nurse Supervisor Aurelia Pennekamp just a few months into its first school year. The original school buildings are constructed with a unique “lift-slab” structure that allows the interior spaces to be reconfigured by moving walls; this structural system was subsequently employed for additions to several other District campuses. The original school consisted of two Kindergarten and 12 grade-level classrooms, but another three classrooms were added after just one year. Portable classrooms were added in the 1990s, as well as a library and media center wing.
Pennekamp Elementary
Existing Building Use Plan

Existing Site Condition

Existing Condition
- **Grade Configuration:** K-5
- **Year Built:** 1985
- **Year Modernized:** 2000

EXISTING

Pennekamp Elementary School

- **Total Square Feet:** 35,878 ft²
- **Site Acres:** 0.7 acres
- **Classrooms Per Student:** 664 ft²
- **Buildings and Ground Area:** 4.9 acres
- **Playfields and Basketball Areas:** 0.1 acres
- **Area Per Student:** 336 ft²
- **Parking and Roads Area:** 0.8 acres
- **CDE Recommended Area:** 0.8 acres

Instruction Space Capacity

<table>
<thead>
<tr>
<th>Category</th>
<th>Existing</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>K-3</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4-6</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Support Facility

- **Teachers’ Lounge:** 1
- **Speech:** 1
- **Library:** 1
- **Music:** 1
- **Science Lab:** 1
- **Computing Center:** 1
- **Clinic:** 1

Pennekamp: School Category for Minimum Recommended Facilities

<table>
<thead>
<tr>
<th>Space</th>
<th>Existing Square Feet</th>
<th>Required Square Feet</th>
<th>Master Plan Proposed SPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>1,514</td>
<td>1,700</td>
<td></td>
</tr>
<tr>
<td>Site Improvements</td>
<td>339</td>
<td>330</td>
<td></td>
</tr>
</tbody>
</table>

Overall Grade

B– 2.50

Grading by Category
- **Site Improvements:** C+ 2.45
- **Architecture & Structure:** B– 2.71
- **Building Systems:** C+ 2.29
- **Interior Spaces:** C+ 2.43
- **Furnishings, Fixtures & Equipment:** B– 2.63
- **Other Structures & Improvements:** B– 2.50
Assessment Summary

Site Improvements

- Utilities appear adequate for the property and are in good condition.
- The drop-off configuration is poor with little space for stacking and a location that requires visitors to cross the drop-off lane to reach the school.
- Asphalt paving is in poor condition and deteriorated at some locations.
- Concrete flatwork is in good condition.
- Site drainage is adequate, with a localized problem area near the relocatable buildings on the northeast side of the campus.
- Retaining walls, landscaping, and irrigation are in good condition.
- Play fields are large and heavily used, and in good condition.

Architecture & Structure

- The structure appears to be in good condition, with no apparent signs of movement.
- Roofing is in good to fair condition, with some active leaks that require immediate patching.
- Exterior walls, stairs, railings, and windows and doors are in good condition.
- We note that buildings on this campus are similar to buildings at the Meadows campus that are included on the AB 300 Inventory.

Building Systems

- The plumbing system and fixtures are in fair condition, with adequate pressure and some reported minor leaks.
- The gas system is in good condition, also with adequate pressure.
- The electrical service is in good condition.
- Heaters are in good condition.

Interior Spaces

- Interior finishes are in good to fair condition.
- Interior doors and hardware are in good condition.

Furniture, Fixtures & Equipment

- Casework, classroom furniture and window coverings vary in age, and are in good condition.
- Kitchen equipment is in good condition and will require routine replacement.
- Fire extinguishers are adequately sized and up-to-date with inspections.
- Heating equipment and light fixtures are in fair condition.

Other Structures & Improvements

- Exterior identification signs, exterior lighting and perimeter fencing are in good condition.
- Modular classrooms are in fair to poor condition, with visible deterioration.
- Portable storage sheds are in fair condition.
- The campus has fair levels of accessibility and code compliance, with problem areas where grade changes make connections to the public way difficult.
- The campus has a fair level of technology infrastructure, with a relatively new technology resource lab.

See Chapter 2 for general comments.
Proposed Site Summary

The ‘front door’ for this campus will be relocated from South Rowel Avenue to a new campus drop-off area and parking lot located at the south portion of the site with the construction of a new administration building and expansion of the kindergarten complex. The existing campus entrance will be converted to the new kindergarten drop-off area. This will help alleviate the congestion in the neighborhood by having the majority of the drop-off traffic enter the site from Peck Avenue. It is proposed that all of the relocatable classrooms be removed and the instructional space be incorporated into a new two-story classroom wing. A new multi-purpose building is also proposed near the new entrance to the campus adjacent to the reconfigured playfields.

The remaining buildings are proposed to be modernized or reconfigured to comply with the educational specifications for “Next Generation” learning. The existing multi-purpose building will be reconfigured to accommodate additional classrooms and an “Innovation Suite” for the campus. The existing administration building will become the new library. The northern portion of the campus, once the relocatable classrooms are removed, will be re-graded to accommodate a new turf playfield.

EXISTING

Pennekamp Elementary School

<table>
<thead>
<tr>
<th>Building</th>
<th>Existing Classroom</th>
<th>Double Session Kindergarten</th>
<th>Total Square Feet</th>
<th>Site Acres</th>
<th>Area Per Student (ft²)</th>
<th>Buildings and Ground Area</th>
<th>Area Per Student (ft²)</th>
<th>Playfields and Hardcourt Area</th>
<th>Area Per Student (ft²)</th>
<th>Parking and Recess Area</th>
<th>Area Per Student (ft²)</th>
<th>CDE Recommended Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>35,874 ft²</td>
<td>0.7 acre</td>
<td>664.9 ft²</td>
<td>4.0 ft²</td>
<td>374.5 ft²</td>
<td>3.1 ft²</td>
<td>206.9 ft²</td>
<td>0.6 ft²</td>
<td>61.1 ft²</td>
<td>15.8 acres</td>
</tr>
</tbody>
</table>

NEW

Pennekamp Elementary School

<table>
<thead>
<tr>
<th>Building</th>
<th>Proposed Master Plan</th>
<th>Double Session Kindergarten</th>
<th>Total Square Feet</th>
<th>Site Acres</th>
<th>Area Per Student (ft²)</th>
<th>Buildings and Ground Area</th>
<th>Area Per Student (ft²)</th>
<th>Playfields and Hardcourt Area</th>
<th>Area Per Student (ft²)</th>
<th>Parking and Recess Area</th>
<th>Area Per Student (ft²)</th>
<th>CDE Recommended Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Instruction Space Capacity

<table>
<thead>
<tr>
<th>Grade</th>
<th>Kindergarten</th>
<th>First Grade</th>
<th>Second Grade</th>
<th>Third Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>24</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Support Facility

<table>
<thead>
<tr>
<th>Building</th>
<th>Kindergarten</th>
<th>Speech</th>
<th>Library</th>
<th>Music</th>
<th>Art Center</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pennekamp Elementary School

<table>
<thead>
<tr>
<th>Existing Classroom</th>
<th>Proposed Master Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td></td>
</tr>
<tr>
<td>Outdoor Learning</td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>Playfield</td>
<td></td>
</tr>
<tr>
<td>Hard Courts</td>
<td></td>
</tr>
<tr>
<td>Play Equipment</td>
<td></td>
</tr>
</tbody>
</table>

Pennekamp Elementary School

<table>
<thead>
<tr>
<th>Proposed Master Plan</th>
<th>Existing Classroom</th>
<th>Kindergarten</th>
<th>Outdoor Learning</th>
<th>Library</th>
<th>Playfield</th>
<th>Hard Courts</th>
<th>Play Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Support Facility

<table>
<thead>
<tr>
<th>Building</th>
<th>Innovation Suite</th>
<th>Maker Space</th>
<th>Science Lab</th>
<th>Art Technology Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Site Work Costs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Turf for New Field</td>
<td>44,120 SF</td>
<td>$15.00 per SF</td>
<td>$661,800</td>
</tr>
<tr>
<td>Grading for New Turf Field - Cut/Fill</td>
<td>17,980 CY</td>
<td>$251,720</td>
<td></td>
</tr>
<tr>
<td>New Paly Equipment Area</td>
<td>5,550 SF</td>
<td>$14.00 per SF</td>
<td>$77,700</td>
</tr>
<tr>
<td>New Turf for New Kindergarten & Administration Building</td>
<td>150,000 GAL</td>
<td>$1.06 per GAL</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

Soft Project Costs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Percentage of Soft Costs</th>
<th>Total Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Fees</td>
<td>5.00%</td>
<td>$1,034,185</td>
</tr>
<tr>
<td>Engineering Fees</td>
<td>3.00%</td>
<td>$620,511</td>
</tr>
<tr>
<td>Pre-Construction/Leasing/CEQA</td>
<td>2.00%</td>
<td>$413,674</td>
</tr>
<tr>
<td>Interim Housing (Classrooms)</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Interim Housing (Classrooms & Soils Report)</td>
<td>1 site × $100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Construction Testing/Inspection</td>
<td>2.00%</td>
<td>$413,674</td>
</tr>
<tr>
<td>Furniture & Equipment</td>
<td>36 CR × $10,000 per CR</td>
<td>$360,000</td>
</tr>
<tr>
<td>Escalation (Averaged) 5 year × 3.50% per year</td>
<td>18.77%</td>
<td>$4,473,051</td>
</tr>
</tbody>
</table>

Immediate Needs Costs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Percentage of Immediate Needs</th>
<th>Total Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install ADA Parking Signage</td>
<td>1 EA × $120.00 per EA</td>
<td>$120</td>
</tr>
<tr>
<td>Additional ADA Parking Near Main Office</td>
<td>1 EA × $165.00 per EA</td>
<td>$165</td>
</tr>
<tr>
<td>Repair/Replace Problem Asphalt</td>
<td>1,500 SF × $7.78 per SF</td>
<td>$11,670</td>
</tr>
<tr>
<td>Replace Library/Tech Center HVAC Units</td>
<td>2 EA × $6,050.00 per EA</td>
<td>$12,100</td>
</tr>
</tbody>
</table>

Miscellaneous Costs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Percentage of Miscellaneous Costs</th>
<th>Total Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$5,664</td>
</tr>
</tbody>
</table>

Overall Contingency

10.00% of Total = 11.11% $3,149,162

Total Project Costs for Penninkamp ES

$28,322
Originally known as Morningside Elementary when it opened in 1953, Robinson Elementary had been re-named after former master teacher Opal Robinson by the time the second Kindergarten classroom and administration buildings were added in 1955. Portable classroom buildings were added at the lower site level in the 1990s, along with a series of ramps and other accessibility upgrades.
Robinson Elementary School
Existing Building Use Plan

Existing Legend
- Administration
- Classrooms
- Kindergarten
- Multi-purpose Room
- Food Service
- Abandoned
- Special Education
- Specialty Classroom
- Abandoned
- Leased Facilities

Existing Site Condition
- Grade Configuration: K-5
- Year Built: 1933
- Year Modernized: 1998

<table>
<thead>
<tr>
<th>Existing Elementary School</th>
<th>Exterior</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Session Kindergarten</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Portable balconies</td>
<td>25,721 sf</td>
<td></td>
</tr>
<tr>
<td>Site Acres</td>
<td>5.4 acres</td>
<td></td>
</tr>
<tr>
<td>Buildings and Ground Area</td>
<td>566.8 sf</td>
<td></td>
</tr>
<tr>
<td>Area Per Student (ft²)</td>
<td>209.9 ft²</td>
<td></td>
</tr>
<tr>
<td>Playfields and Vehicular Area</td>
<td>2.5 acres</td>
<td></td>
</tr>
<tr>
<td>Area Per Student (ft²)</td>
<td>209.9 ft²</td>
<td></td>
</tr>
<tr>
<td>Parking and Symbol Area</td>
<td>0.4 acres</td>
<td></td>
</tr>
<tr>
<td>CDE Recommended Acres</td>
<td>7.5 acres</td>
<td></td>
</tr>
</tbody>
</table>

Instruction Space Capacity

<table>
<thead>
<tr>
<th>Category</th>
<th>Missing</th>
<th>Existing</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Support Facility

<table>
<thead>
<tr>
<th>Facility</th>
<th>Category</th>
<th>Missing</th>
<th>Existing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom Lath</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library/ Media</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robinson Educational Adequacy for Minimum Essential Facilities

<table>
<thead>
<tr>
<th>Space</th>
<th>Missing Sq Ft</th>
<th>New/Modified Sq Ft</th>
<th>Master Plan Proposed Sq Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParkingFINE</td>
<td>2,388</td>
<td>4,080</td>
<td>4,080</td>
</tr>
<tr>
<td>Class</td>
<td>1,393</td>
<td>1,393</td>
<td>1,393</td>
</tr>
<tr>
<td>Administration</td>
<td>304</td>
<td>504</td>
<td>2,084</td>
</tr>
</tbody>
</table>

Overall Grade

2.25

C+

Grading by Category

- Site Improvements: C 1.89
- Architecture & Structure: C+ 2.29
- Building Systems: C+ 2.43
- Interior Spaces: C 2.00
- Furnishings, Fixtures & Equipment: B– 2.63
- Other Structures & Improvements: C+ 2.29
Assessment Summary

Site Improvements

- The sewer system is original to the campus and has presented problems.
- Asphalt paving is in good condition.
- Concrete flatwork is in good condition, although there is some cracking at the walkway slabs at the southerly buildings and at the kindergarten yard.
- Drainage is a problem at the north side of the kindergarten building and the asphalt at the lower-grade hard court.
- Masonry retaining walls throughout the site are in need of mortar repair.
- Stairs and ramps throughout the site are in good condition. Handrails/guardrails are rusted.

Architecture & Structure

- There is evidence of termite infestation, particularly at the Teachers’ Work Room and Administration buildings and at the custodial room between the kindergarten rooms.
- Overhangs at the southerly buildings were removed due to termite damage.
- There are active roof leaks at the library, which is in a modular building, and in some classrooms.
- Flashing is in good to fair condition, and some gutters and downspouts will require replacement.
- Exterior stucco walls and wood trim are in good condition, including those at the modular buildings.

Building Systems

- Water, gas and electrical distribution systems appear to be adequate and in good condition.
- Lighting fixtures are generally in poor condition. Diffusers are falling from the fixtures in many locations and have been re-attached with zip ties or tape.
- Plumbing fixtures are generally in good condition, but are not compliant with ADA/CBC guidelines. The fixtures at the kindergarten need to be replaced.

Interior Spaces

- The classrooms have combination exposed-structure and glue-up tile ceilings. Glue-up tiles are falling in many places and should be replaced.
- The existing ceiling configuration is interesting and allows for abundant natural light, and any replacement should endeavor to maintain the shapes and daylighting.
- Carpet is generally in good condition, but appears to be stained in high-traffic areas.
- Paint appears to be of a type that is easily scuffed and marks are apparent in most classrooms.
- Flooring at the kindergarten toilet rooms is in particularly poor condition.

Furniture, Fixtures & Equipment

- HVAC equipment varies in age, but was mostly installed in 1998. It is in generally good condition, but is nearing the end of its useful life.
- Plastic laminate casework is generally in good condition, but is peeling in some locations.

Other Structures & Improvements

- Exterior signage and exterior lighting are in good condition.
- Perimeter fencing was recently replaced, but is showing signs of rust through the paint. Hardware used at gates should be reviewed for security and accessibility.
- The four modular classrooms are in fair condition.
- Storage sheds are in poor condition. At least one room shows signs of water damage to the floor substrate.

The comments contained in this summary are specific to the Robinson campus. See Chapter 2 for additional general comments.
Proposed Site Summary

This campus will be reconfigured to provide a new ‘front door’ which the reconfiguration of the existing library into new administration space. Additionally, the construction of a new drop-off and parking area will assist in reducing traffic congestion within the neighborhood and improve student safety. A new multi-purpose building will be constructed at the new campus entrance adjacent to the reconfigured play areas. All relocatable classrooms will be removed from the site and replaced with a new two-story building that will provide a new kindergarten complex and additional classrooms. A portion of the existing drop-off entrance on Morningside Drive will connect through the parking area on 1st Street to provide a kindergarten drop-off area.

The remaining buildings are proposed to be modernized or reconfigured to comply with the educational specifications for “Next Generation” learning. The existing kindergarten building will be reconfigured to accommodate an “Innovation Suite” for the campus.
MP#1 Scope Description

HARD CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct new drop-off and staff parking (to become new entrance to campus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install new secure fencing throughout site</td>
<td>2,560 LF</td>
<td>$65.00 per LF</td>
<td>$166,400</td>
</tr>
<tr>
<td>Reconfigure existing play field to accommodate new hard courts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construct new play equipment areas</td>
<td>3,990 SF</td>
<td>$14.00 per SF</td>
<td>$55,860</td>
</tr>
<tr>
<td>Construct new kindergarten drop-off</td>
<td>4,330 SF</td>
<td>$12.00 per SF</td>
<td>$51,960</td>
</tr>
<tr>
<td>Construct storm water retention system to harvest rainwater for landscape irrigation</td>
<td>150,000 GAL</td>
<td>$1.06 per GAL</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

NEW CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct new multi-purpose building</td>
<td>8,600 SF</td>
<td>$483.39 per SF</td>
<td>$4,157,154</td>
</tr>
<tr>
<td>Construct new park restroom and storage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECONFIGURATION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconfigure existing kindergarten classroom building</td>
<td>3,570 SF</td>
<td>$227.72 per SF</td>
<td>$812,960</td>
</tr>
<tr>
<td>Reconfigure existing library and classroom into administration area</td>
<td>2,850 SF</td>
<td>$227.72 per SF</td>
<td>$649,002</td>
</tr>
<tr>
<td>Reconfigure existing classrooms into new library</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MODERNIZATION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEMOLITION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolish existing multi-purpose building</td>
<td>2,320 SF</td>
<td>$7.00 per SF</td>
<td>$16,240</td>
</tr>
<tr>
<td>Remove four (4) existing relocatables</td>
<td>3,840 SF</td>
<td>$7.00 per SF</td>
<td>$26,880</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology System Upgrades</td>
<td>18,240 SF</td>
<td>$15.00 per SF</td>
<td>$273,600</td>
</tr>
</tbody>
</table>

SOFT PROJECT COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Fees</td>
<td>5.00%</td>
<td>$642,706</td>
</tr>
<tr>
<td>Engineering Fees</td>
<td>3.00%</td>
<td>$385,624</td>
</tr>
<tr>
<td>Interim Housing (Classrooms per Year)</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Topographic Survey & Soils Report</td>
<td>1 site</td>
<td>$100,000</td>
</tr>
<tr>
<td>Construction Testing/Inspection</td>
<td>2.00%</td>
<td>$257,082</td>
</tr>
<tr>
<td>Furniture & Equipment</td>
<td>19 CR</td>
<td>$190,000</td>
</tr>
</tbody>
</table>

IMMEDIATE NEEDS

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termite/Vermin/Infestation Consultant</td>
<td>1 EA</td>
<td>$5,500</td>
</tr>
<tr>
<td>Point brick retaining walls</td>
<td>2 SF</td>
<td>$1,896</td>
</tr>
<tr>
<td>Misc. roof gutter repairs</td>
<td>6 EA</td>
<td>$2,250</td>
</tr>
<tr>
<td>Built-up roofing, minor repairs</td>
<td>100 SF</td>
<td>$4,534</td>
</tr>
<tr>
<td>Replace shingles at storage sheds</td>
<td>500 SF</td>
<td>$1,685</td>
</tr>
<tr>
<td>General painting</td>
<td>1,500 SF</td>
<td>$3,630</td>
</tr>
<tr>
<td>Replace carpet</td>
<td>2,108 SY</td>
<td>$126,269</td>
</tr>
</tbody>
</table>

TOTAL PROJECT COSTS FOR ROBINSON ES

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Contingency</td>
<td>10.00%</td>
<td>$1,977,291</td>
</tr>
</tbody>
</table>

Escalation (Averaged) 5 year

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$30,748</td>
</tr>
</tbody>
</table>

IMMEDIATE NEEDS COSTS SUBTOTAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termite/Vermin/Infestation Consultant</td>
<td>1 EA</td>
<td>$5,500</td>
</tr>
<tr>
<td>Point brick retaining walls</td>
<td>2 SF</td>
<td>$1,896</td>
</tr>
<tr>
<td>Misc. roof gutter repairs</td>
<td>6 EA</td>
<td>$2,250</td>
</tr>
<tr>
<td>Built-up roofing, minor repairs</td>
<td>100 SF</td>
<td>$4,534</td>
</tr>
<tr>
<td>Replace shingles at storage sheds</td>
<td>500 SF</td>
<td>$1,685</td>
</tr>
<tr>
<td>General painting</td>
<td>1,500 SF</td>
<td>$3,630</td>
</tr>
<tr>
<td>Replace carpet</td>
<td>2,108 SY</td>
<td>$126,269</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$30,748</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escalation (Averaged) 5 year</td>
<td>3.50%</td>
<td>$2,780,603</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>10.00%</td>
<td>$1,977,291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$30,748</td>
</tr>
<tr>
<td>Escalation (Averaged) 5 year</td>
<td>3.50%</td>
<td>$2,780,603</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>10.00%</td>
<td>$1,977,291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$30,748</td>
</tr>
<tr>
<td>Escalation (Averaged) 5 year</td>
<td>3.50%</td>
<td>$2,780,603</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>10.00%</td>
<td>$1,977,291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Contractor Costs</td>
<td>20.00%</td>
<td>$30,748</td>
</tr>
<tr>
<td>Escalation (Averaged) 5 year</td>
<td>3.50%</td>
<td>$2,780,603</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>10.00%</td>
<td>$1,977,291</td>
</tr>
</tbody>
</table>
Manhattan Beach Middle School
1501 North Redondo Avenue
Manhattan Beach, CA 90266

Manhattan Beach Middle School opened in 1998 as a state-of-the-art facility designed specifically to meet the needs of 1,100 middle school students - a population that has since burgeoned to 1,525. The middle school philosophy is reflected in the grade level villages where classrooms, counseling services, and a workroom are centralized to meet students’ needs efficiently and effectively.

<table>
<thead>
<tr>
<th>DSA Certified Projects</th>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-66151</td>
<td>New Construction</td>
<td></td>
<td>1996</td>
<td>Closed</td>
</tr>
<tr>
<td>03-105426</td>
<td>Relocatables</td>
<td></td>
<td>2002</td>
<td>Closed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projects Not Certified by DSA</th>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-115238</td>
<td>Relocatables</td>
<td></td>
<td>2013</td>
<td>Pending</td>
</tr>
</tbody>
</table>

Buildings on AB 300 Inventory
None Found
Manhattan Beach Middle School
Existing Building Use Plan

Existing Site Condition

<table>
<thead>
<tr>
<th>Grade Configuration</th>
<th>6-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1996</td>
</tr>
<tr>
<td>Year Modernized</td>
<td>N/A</td>
</tr>
</tbody>
</table>

EXISTING

MB Middle School

- **Site Area**: 10.0 acres
- **Total Square Feet**: 93,100 sf
- **Buildings and Ground Area**: 8,100 sf
- **Playfields and Parking Area**: 4,7 acres
- **Parking and Building Area**: 5.7 acres
- **Area Per Student (at):** 102.4 sf
- **Area Per Student (at):** 7.6 acres
- **GFC Reclaimed Acres**: 22.5 acres

Instruction Space Capacity

- **Type**: General, Special, Multipurpose, Admin

Support Facility

- **Type**: General, Special, Multipurpose, Admin

GRADING BY CATEGORY

- **Site Improvements**: B– (2.68)
- **Architecture & Structure**: B– (2.50)
- **Building Systems**: B (2.86)
- **Interior Spaces**: B– (2.57)
- **Furnishings, Fixtures & Equipment**: B (3.00)
- **Other Structures & Improvements**: B (2.93)

Overall Grade: 2.76
Assessment Summary

Site Improvements

- Asphalt paving and concrete flatwork are in good condition.
- Drainage is adequate, with no evidence of major ponding.
- Landscaping and irrigation are in good condition, as are retaining walls.
- Parking was a large consideration in the design, and is adequate.
- The drop-off configuration is acceptable.
- Play fields are in good to fair condition.

Architecture & Structure

- The structure appears to be stable.
- Roofing is in good condition, although minor leaks are reported at the Gym and routine maintenance should be performed.
- Exterior finishes, stairs, railings, windows and doors are all in good condition.
- An area of deck coating is failing and should be assessed and repaired in order to avoid damage to the structure and interior.

Building Systems

- Water, sewer, gas and electrical systems are all in good condition and appear to be adequate.
- Plumbing fixtures are in good condition.
- Elevators are in good condition, and finishes will require replacement within five years.
- Fire sprinkler and alarm systems are in good condition.

Interior Spaces

- Interior finishes are in good condition.

Furniture, Fixtures & Equipment

- Casework and classroom furniture are in good condition.
- Window coverings are in generally good condition.
- Fire extinguishers are adequately sized and up-to-date with inspections.
- HVAC equipment is in fair condition.
- The kitchen currently functions as the “central kitchen” for the District, so kitchen equipment is closer to needing replacement than at other sites where the kitchens have been transformed into “warming” kitchens.

Other Structures & Improvements

- Exterior identification signs and exterior lighting are in good condition.
- Perimeter fencing is in good condition.
- Modular classrooms and portable storage sheds are in good condition.
- The campus has good levels of accessibility and code compliance.
- The campus has good levels of technology infrastructure.

The comments contained in this summary are specific to the Manhattan Beach Middle School campus. See Chapter 2 for additional general comments.
Proposed Site Summary

The crucial elements associated with the Middle School master plan revolve around alleviating the overcrowding associated with a school designed for 1,100 students with a current enrollment of 1,525. The plan proposes to remove relocatable classrooms and consolidate these instructional spaces in ‘additions’ to the existing 6th, 7th and 8th grade clusters, incorporating science labs and classrooms. The existing instruction spaces within these clusters will be moderately reconfigured to incorporate “Next Generation” learning principles such as transparency, collaboration and a student project-based area.

The continued success and expansion of the District’s music program requires that the Middle School construct a new multi-purpose performance space to accommodate the music, choral and drama programs which have long ago out grown their existing spaces. The multi-purpose room with have retractable theatrical seating and a stage to accommodate both musical and theatrical performances. The multi-purpose room will also be utilized as a campus gathering space for events and lectures.

The master plan includes moving the District’s central kitchen function from the Middle School to a new District Central Kitchen at the Maintenance and Operations Site. This will improve traffic flow and student safety at the Middle School due to multiple trucks accessing the kitchen for pickup and delivery.

To relieve congestion for student drop-off, parking and student safety, a new parking lot and drop-off area will be added to Peck Avenue across from Polliwog Park to encourage parents to utilize this area as an alternative drop-off location from the main drop-off at the campus entrance. The plan also calls for limiting access to Manhattan Beach Middle School from the northern Park entrance at Premier Field during the beginning and ending of the school day. Playfields will be reconfigured to accommodate storm water retention systems and pervious paving is being proposed in the existing parking area as well as the new parking area to reduce storm water run-off into Polliwog Park.
2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN

MASTER PLANNING

<table>
<thead>
<tr>
<th>DSA Certified Projects</th>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-66151</td>
<td>New Construction</td>
<td>1996</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>03-105426</td>
<td>New Construction/Relocatables</td>
<td>2002</td>
<td>Closed</td>
<td></td>
</tr>
</tbody>
</table>

Projects Not Certified by DSA

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANHATTAN BEACH MS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mira Costa High School
1401 Artesia Blvd.
Manhattan Beach, CA 90266

Mira Costa High School is built on a former nursery that was owned by a Japanese immigrant family prior to World War II. When it opened in 1950, Mira Costa was the first high school in the northern part of the former South Bay Union High School District. The campus was sited on the top of a hill in the middle of an open field, and featured an administration office and classroom buildings laid out in rows. The campus quickly expanded beyond its original design, adding a “gymatorium” in 1952, the football stadium in 1956, the performance auditorium in 1962, and additional classroom space in the late 1960s. Various modernizations in the 1990s and early 2000s addressed some necessary upgrades, and two recent projects added new buildings to create a well-defined “quad” area in the middle of the campus.

DSA Certified Projects

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-64116</td>
<td>Modernization</td>
<td>1995</td>
<td>Closed</td>
</tr>
<tr>
<td>03-102718</td>
<td>Modernization</td>
<td>1999</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Projects Not Certified by DSA

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Project Description</th>
<th>Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-103292</td>
<td>Modernization</td>
<td>2000</td>
<td>Closed</td>
</tr>
<tr>
<td>03-105507</td>
<td>New Construction</td>
<td>2002</td>
<td>Closed</td>
</tr>
<tr>
<td>03-105651</td>
<td>New Construction</td>
<td>2003</td>
<td>Closed</td>
</tr>
<tr>
<td>03-113632</td>
<td>New Construction</td>
<td>2011</td>
<td>Pending</td>
</tr>
<tr>
<td>03-113633</td>
<td>Modernization</td>
<td>2011</td>
<td>Pending</td>
</tr>
<tr>
<td>03-113634</td>
<td>New Construction</td>
<td>2011</td>
<td>Pending</td>
</tr>
<tr>
<td>03-116017</td>
<td>Access Compliance</td>
<td>2014</td>
<td>Pending</td>
</tr>
</tbody>
</table>

Buildings on AB 300 Inventory

<table>
<thead>
<tr>
<th>Project ID Number</th>
<th>Current Building Description</th>
<th>Application Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>12239</td>
<td>Buildings E and F</td>
<td>1954</td>
</tr>
<tr>
<td>13235</td>
<td>Buildings B, W, Z</td>
<td>1955</td>
</tr>
<tr>
<td>19564</td>
<td>Building Z (Small Gym)</td>
<td>1959</td>
</tr>
<tr>
<td>19567</td>
<td>Building H - Auditorium</td>
<td>1959</td>
</tr>
</tbody>
</table>
Mira Costa High School
Existing Building Use Plan

Existing Site Condition

Grade Configuration: 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN

EXISTING

Mira Costa High School

Site Condition

<table>
<thead>
<tr>
<th>Feature</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Area</td>
<td>325,000 sq ft</td>
</tr>
<tr>
<td>Site Area</td>
<td>27 acres</td>
</tr>
<tr>
<td>Buildings and Ground Area</td>
<td>25 acres</td>
</tr>
<tr>
<td>Classrooms</td>
<td>10 acres</td>
</tr>
<tr>
<td>Multi-purpose Rooms</td>
<td>5 acres</td>
</tr>
<tr>
<td>Food Service</td>
<td>2 acres</td>
</tr>
<tr>
<td>Abandoned</td>
<td>1 acre</td>
</tr>
<tr>
<td>Leased Facilities</td>
<td>1 acre</td>
</tr>
</tbody>
</table>

Instrucion Space Capacity

<table>
<thead>
<tr>
<th>Room Type</th>
<th>Minimum</th>
<th>Building</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Special Education</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Support Facility

Site Improvements: C+ 2.44
Architecture & Structure: C+ 2.43
Building Systems: C+ 2.36
Interior Spaces: B- 2.57
Furnishings, Fixtures & Equipment: C+ 2.38
Other Structures & Improvements: B 3.00

Overall Grade: B- 2.53

GRADING BY CATEGORY

378 | 2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN
Assessment Summary

Note that this assessment covers non-modernized older buildings.

Site Improvements

- Utilities appear to be in good condition and are adequate.
- Asphalt paving, concrete flatwork and other site pavements are in good condition, although some areas have been cut and patched several times.
- Drainage is adequate, with no evidence of major ponding.
- Landscape and irrigation appear to be in good condition, as are retaining walls.

Architecture & Structure

- Structures show no evidence of instability or movement.
- Roofing is in good to fair condition, depending on the age.
- Flashing is in good condition.
- At Building YY, paint is failing on some galvanized sheet metal components.
- Exterior walls, stairs and rails are in good condition.
- Exterior windows and doors are in good to fair condition.
- Several buildings on the campus are included on the AB 300 Inventory, including buildings E and F, W, B, portions of building Z (the Gym complex), and the Auditorium.

Building Systems

- Water and sewer systems appear to be in fair condition, and water pressure is adequate.
- Toilet room fixtures are in good condition, but many do not comply with current accessibility codes.
- Gas piping appears to be in fair condition, and pressure is adequate.
- Electrical service capacity appears to meet demand.
- The elevators are in good condition, but the inspection certificate is expired, and the finishes need replacement.
- Fire alarm and fire sprinkler systems are in good condition and require only routine maintenance.

Interior Spaces

- Interior finishes are in good condition, as are doors and hardware.
- The Gym floor needs refinishing within five years.

Furniture, Fixtures & Equipment

- Kitchen equipment appears to be in good condition, and the freezers will require replacement within five years.
- HVAC equipment is generally in fair condition. Equipment in the Gym and Library are not operable, and require immediate replacement.
- There are reportedly leaks in the plumbing system in the Gym that will need to be fixed.
- Light fixtures require replacement within five years.

Other Structures & Improvements

- Identification and monument signs are in good condition, as are exterior fencing and lighting.
- There are no modular classrooms on the campus.
- The campus has a good level of accessibility due to relatively recent work.

The comments contained in this summary are specific to the Mira Costa High School campus. See Chapter 2 for additional general comments.
Proposed Site Summary

The master plan proposes to remove the existing athletics building and replace it with a new 'state-of-the-art' athletics complex comprised of a new 'triple' competition gymnasium, a practice gym, wrestling, dance, weight training and aerobics rooms along with the necessary coach’s offices, locker rooms and support facilities. The complex is envisioned to function as part of the stadium, providing additional restrooms and food service for events. In conjunction with the new athletics complex, the master plan proposes to renovate 'Stadium Way' to include additional bleachers and storage and to connect the promenade with Peck Avenue and the new Campus Quad.

The existing Humanities classrooms, English classrooms and Media Center will be consolidated into a new three-story building. The Media Center will be located on the first floor with the English and Humanities department on the second and third floors. The educational specifications call for collaborative instructional environments encouraging interdisciplinary and co-teaching opportunities promoting the principles of 'Next Generation' learning.
Master Planning

Mira Costa HS

Guiding Principles

<table>
<thead>
<tr>
<th>Matter</th>
<th>Learner</th>
<th>Centered</th>
<th>Nurture the Whole Child</th>
<th>Community</th>
<th>Partner</th>
<th>Leverage Sustainability</th>
<th>Aesthetics</th>
</tr>
</thead>
</table>

Hard Construction Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct stair and ramp connection from stadium to District Administration parking lot</td>
<td>9,960 SF</td>
<td>$45.00 per SF</td>
<td>$137,700</td>
</tr>
<tr>
<td>Reconfigure connection from central Quad to stadium</td>
<td>3,800 SF</td>
<td>$30.00 per SF</td>
<td>$114,000</td>
</tr>
<tr>
<td>Construct new "Senior Quad"</td>
<td>11,409 SF</td>
<td>$45.00 per SF</td>
<td>$513,405</td>
</tr>
<tr>
<td>Construct new Entrance</td>
<td>20,000 SF</td>
<td>$45.00 per SF</td>
<td>$900,000</td>
</tr>
<tr>
<td>Construct storm water retention system to harvest rainwater for landscape irrigation</td>
<td>150,000 GAL</td>
<td>$1.06 per GAL</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

Soft Project Costs

- Architectural Fees: 5.00% = $3,414,216
- Engineering Fees: 3.00% = $2,048,530
- Pre-Construction/Legal/Planning/CEQA: 2.00% = $1,365,686
- Interim Housing (Classrooms per Year): 0.00% = $0
- Topographic Survey & Soils Report: 1.08% = $100,000
- Construction Testing/Inspection: 2.00% = $1,365,686
- Plan Check (DSA & Other Agencies): 1.00% = $682,843
- Furniture & Equipment: 3.02% = $280,000

Total Project Costs for Mira Costa HS

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage of Total Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$102,378,140</td>
<td>100%</td>
</tr>
</tbody>
</table>

Immediate Needs

- ADA Improvements to Elevator: 13.92% = $6,350
- Replace Suspended Heaters: 24.47% = $11,158
- Replace Air Handling Unit: 34.15% = $15,575

Overall Contingency

- 10.00% of total costs = $10,237,814

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage of Total Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10,237,814</td>
<td>10.00%</td>
</tr>
</tbody>
</table>
Education Center
(District Office)

325 S. Peck Ave.
Manhattan Beach, CA 90266

Year Built: 2003
Site Area (acres): 3.45
Building Area (s.f.): 16,824
Assessment Summary

Site Improvements

- Utilities appear to be adequate.
- Asphalt paving and concrete flatwork are in good to fair condition.
- Drainage appears to be adequate, except an area at the rear entry that floods during heavy rains.
- Landscape and irrigation are in good condition.
- The retaining walls appear to be in good condition.

Architecture & Structure

- The structure appears to be stable, and the sub-grade basement walls are in good condition.
- There is no evidence or reports of roof leaks, and the roofing and flashing are in good condition.
- Exterior walls are in good condition.
- Stairs and railings are in good condition, as are exterior windows and doors.

Building Systems

- HVAC equipment is in fair condition, and is original to the building. It is nearing the end of its useful life and will require replacement within five years.
- Plumbing and gas systems and fixtures are in good condition.
- Electrical system is in good condition and is adequate to demands.
- The elevator is in good condition.
- Fire alarm and fire sprinkler systems are in good condition.

Interior Spaces

- Interior lighting, doors and hardware are all in good condition.
- Carpet will need replacement within five years. Other finishes are in good condition.

Furniture, Fixtures & Equipment

- Furniture is in good condition.

Other Structures & Improvements

- Signage, lighting and fencing are in good condition.
Maintenance & Operations
325 S. Peck Ave.
Manhattan Beach, CA 90266

Grade Configuration: N/A
Year Built: 1957
Modernization Years: N/A
Site Area (acres): 2.03
Building Area (s.f.): 15,310
Maintenance & Operations
Existing Building Use Plan

Existing Legend
- Administration
- Classrooms
- Special Education
- Kindergarten
- Multi-purpose Room
- Speciality Classroom
- Food Service
- Abandoned
- Leased Facilities

Overall Grade
2.06

Site Improvements
2.18
Architecture & Structure
2.21
Building Systems
1.79
Interior Spaces
2.29
Furnishings, Fixtures & Equipment
1.88
Other Structures & Improvements
2.00
Assessment Summary

Site Improvements
- Utilities appear to be adequate.
- Asphalt paving is in poor condition, with cracking and surface deterioration.
- Concrete flatwork is in good condition.
- Drainage appears to be adequate.
- Landscape and irrigation are not present on the immediate site.
- Fencing and lighting are in fair condition.
- There are accessibility items related to parking and signage.

Architecture & Structure
- The structure shows no evidence of movement.
- Roofing membrane is in fair condition, and requires replacement.
- Exterior wall finishes are in poor condition, and need re-coating.
- Windows, doors and hardware are in fair condition.

Building Systems
- HVAC equipment is original to the building. It is generally in fair to poor condition, and many of the units are not functional.
- Water and sewage piping is in poor condition, with frequent clogs and leaks.
- Gas distribution piping is in fair condition.
- Electrical equipment is in fair to poor condition, and the main distribution panels require replacement.
- The fire sprinkler system appears to be in good condition.

Interior Spaces
- Interior finishes are in fair condition.
- Interior doors and hardware are in good condition, but some do not comply with accessibility standards.

Interior finishes are in fair condition.

Other Structures & Improvements
- There are several storage buildings and containers, which are in fair condition.

Furniture, Fixtures & Equipment
- Not applicable.
A new Maintenance and Operations Building will be built on the existing site while the existing building remains in operation. Once the new project is completed, the existing building will be demolished and the site will be reconfigured to accommodate the construction of the new District Central Kitchen.
Polliwog Park
Proposed Master Site Plan

Planning Legend

N R M

Administration
Classrooms
Special Education
Maintenance & Operations
N= NEW CONSTRUCTION
R= RECONFIGURE
M= MODERNIZATION

N R M

Kindergarten
Multipurpose Room
Food Service
Multi-Purpose Performance
Fence - Decorative
Fence Chain Link

Dog Park
Premier Field
Outdoor Learning
Soccer/ Softball
Community Pool
Slope
Shade Structure
What Does It Cost?

Once the project priorities were identified and included in the campus master plans, a cost was developed for each project. DLR Group utilized Cumming Corporation to develop a “unit cost” for various project types of the campus master plans based on an analysis of similar projects in similar locations. The following is a list of the “unit costs” for each of the project types:

<table>
<thead>
<tr>
<th>UNIT COSTS</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Lots</td>
<td>$12.00 SF</td>
</tr>
<tr>
<td>Turf Playfields</td>
<td>$15.00 SF</td>
</tr>
<tr>
<td>Asphalt Playfields</td>
<td>$9.50 SF</td>
</tr>
<tr>
<td>Rubber Safety Matting</td>
<td>$14.00 SF</td>
</tr>
<tr>
<td>Fencing - Decorative</td>
<td>$250.00 SF</td>
</tr>
<tr>
<td>Fencing - Chain Link</td>
<td>$65.00 LF</td>
</tr>
<tr>
<td>Rough and Finish Grading</td>
<td>$14.00 CY</td>
</tr>
<tr>
<td>Storm Water Retention System</td>
<td>$1.06 gal</td>
</tr>
<tr>
<td>Ramps / Stairs</td>
<td>$45.00 SF</td>
</tr>
<tr>
<td>Concrete Flatwork</td>
<td>$30.00 SF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW BUILDINGS</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Story Classroom Building</td>
<td>$349.44 SF</td>
</tr>
<tr>
<td>1-Story Kindergarten Building</td>
<td>$321.48 SF</td>
</tr>
<tr>
<td>Multi-Purpose / Performing Arts</td>
<td>$483.39 SF</td>
</tr>
<tr>
<td>Performing Arts Center</td>
<td>$493.88 SF</td>
</tr>
<tr>
<td>Park Restroom & Storage</td>
<td>$517.75 SF</td>
</tr>
<tr>
<td>Athletic Complex</td>
<td>$476.40 SF</td>
</tr>
<tr>
<td>Building Demolition</td>
<td>$7.00 SF</td>
</tr>
<tr>
<td>Outdoor Learning</td>
<td>$174.72 SF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING MODERNIZATION</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain Same Function</td>
<td>$178.80 SF</td>
</tr>
<tr>
<td>Reconfigure to New Function</td>
<td>$227.72 SF</td>
</tr>
<tr>
<td>Technology Systems</td>
<td>$15.00 SF</td>
</tr>
<tr>
<td>Modernize Outdoor Learning</td>
<td>$89.40 SF</td>
</tr>
</tbody>
</table>

To gain a fully-developed understanding of the anticipated costs associated with the master planning process, DLR Group included the ‘soft costs’ for each of the campus master plans. Again, in conjunction with Cumming Corporation, the soft costs assumptions are as follows:

<table>
<thead>
<tr>
<th>SOFT COSTS</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escalation Calculation: To year 5</td>
<td>3.50% of total at 11.11% per year</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>10.00%</td>
</tr>
<tr>
<td>Hard Cost Contingency</td>
<td>10.00%</td>
</tr>
<tr>
<td>Contractor OH&P</td>
<td>15.00%</td>
</tr>
<tr>
<td>Architectural Fees</td>
<td>0.00%</td>
</tr>
<tr>
<td>Engineering Fees</td>
<td>4.00%</td>
</tr>
<tr>
<td>Pre-Com/Legal/CEQA</td>
<td>2.00%</td>
</tr>
<tr>
<td>Testing & Inspection</td>
<td>2.00%</td>
</tr>
<tr>
<td>DSA Fees</td>
<td>1.50%</td>
</tr>
<tr>
<td>Immediate Soft Costs</td>
<td>10.00%</td>
</tr>
<tr>
<td>Immediate Constr/Contr</td>
<td>20.00%</td>
</tr>
</tbody>
</table>
Total Project Costs for School and District Facilities

The costs associated with each of the campus priorities are shown in the tables below. They are broken down into immediate needs costs, MPIP (Master Plan Improvement Program) hard costs, MPIP soft costs, escalation and contingencies. One important note regarding this breakdown, the immediate needs costs may be added to be reduced at some of the campuses if the other priorities are approved to proceed in the implementation of the master plan. For instance, there would also be a need to replace the roof at a particular campus if the building is slated for demolition in the near future. The MPIP hard costs are further broken down by the type of project on the right column and the total costs are graphically shown in the central charts to illustrate the comparison of hard costs vs. soft costs. It should be further noted that the costs associated with POLLIOG Park show the maximum anticipated District contribution. Other sources of funding will be identified and secured prior to any design or construction involving these aspects of the master plan.

The anticipated project costs associated with each aspect of the Facilities Master Plan are as follows:

Manhattan Beach PS

<table>
<thead>
<tr>
<th>Category</th>
<th>MPIP Hard Costs</th>
<th>Site Work</th>
<th>Site Work 2017-18</th>
<th>Overall Contingency</th>
<th>Escalation</th>
<th>Total Project Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Work</td>
<td>$2,564,690</td>
<td>$1,619,151</td>
<td>$3,120,417</td>
<td>$0</td>
<td>$0</td>
<td>$3,448,182</td>
</tr>
<tr>
<td>Site Work 2017-18</td>
<td>$1,563,725</td>
<td>$1,340,208</td>
<td>$2,011,820</td>
<td>$0</td>
<td>$0</td>
<td>$2,352,020</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>$10,237,315</td>
<td>$4,094,760</td>
<td>$6,142,825</td>
<td>$0</td>
<td>$0</td>
<td>$10,237,315</td>
</tr>
<tr>
<td>Escalation</td>
<td>$1,046,423</td>
<td>$518,400</td>
<td>$1,046,423</td>
<td>$0</td>
<td>$0</td>
<td>$1,046,423</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$18,345,955</td>
<td>$17,973,805</td>
<td>$18,635,537</td>
<td>$0</td>
<td>$0</td>
<td>$18,635,537</td>
</tr>
</tbody>
</table>

Grandview ES

<table>
<thead>
<tr>
<th>Category</th>
<th>MPIP Hard Costs</th>
<th>Site Work</th>
<th>Site Work 2017-18</th>
<th>Overall Contingency</th>
<th>Escalation</th>
<th>Total Project Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Work</td>
<td>$2,564,690</td>
<td>$1,619,151</td>
<td>$3,120,417</td>
<td>$0</td>
<td>$0</td>
<td>$3,448,182</td>
</tr>
<tr>
<td>Site Work 2017-18</td>
<td>$1,563,725</td>
<td>$1,340,208</td>
<td>$2,011,820</td>
<td>$0</td>
<td>$0</td>
<td>$2,352,020</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>$10,237,315</td>
<td>$4,094,760</td>
<td>$6,142,825</td>
<td>$0</td>
<td>$0</td>
<td>$10,237,315</td>
</tr>
<tr>
<td>Escalation</td>
<td>$1,046,423</td>
<td>$518,400</td>
<td>$1,046,423</td>
<td>$0</td>
<td>$0</td>
<td>$1,046,423</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$18,345,955</td>
<td>$17,973,805</td>
<td>$18,635,537</td>
<td>$0</td>
<td>$0</td>
<td>$18,635,537</td>
</tr>
</tbody>
</table>

Meadows ES

<table>
<thead>
<tr>
<th>Category</th>
<th>MPIP Hard Costs</th>
<th>Site Work</th>
<th>Site Work 2017-18</th>
<th>Overall Contingency</th>
<th>Escalation</th>
<th>Total Project Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Work</td>
<td>$2,564,690</td>
<td>$1,619,151</td>
<td>$3,120,417</td>
<td>$0</td>
<td>$0</td>
<td>$3,448,182</td>
</tr>
<tr>
<td>Site Work 2017-18</td>
<td>$1,563,725</td>
<td>$1,340,208</td>
<td>$2,011,820</td>
<td>$0</td>
<td>$0</td>
<td>$2,352,020</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>$10,237,315</td>
<td>$4,094,760</td>
<td>$6,142,825</td>
<td>$0</td>
<td>$0</td>
<td>$10,237,315</td>
</tr>
<tr>
<td>Escalation</td>
<td>$1,046,423</td>
<td>$518,400</td>
<td>$1,046,423</td>
<td>$0</td>
<td>$0</td>
<td>$1,046,423</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$18,345,955</td>
<td>$17,973,805</td>
<td>$18,635,537</td>
<td>$0</td>
<td>$0</td>
<td>$18,635,537</td>
</tr>
</tbody>
</table>

Pacific ES

<table>
<thead>
<tr>
<th>Category</th>
<th>MPIP Hard Costs</th>
<th>Site Work</th>
<th>Site Work 2017-18</th>
<th>Overall Contingency</th>
<th>Escalation</th>
<th>Total Project Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Work</td>
<td>$2,564,690</td>
<td>$1,619,151</td>
<td>$3,120,417</td>
<td>$0</td>
<td>$0</td>
<td>$3,448,182</td>
</tr>
<tr>
<td>Site Work 2017-18</td>
<td>$1,563,725</td>
<td>$1,340,208</td>
<td>$2,011,820</td>
<td>$0</td>
<td>$0</td>
<td>$2,352,020</td>
</tr>
<tr>
<td>Overall Contingency</td>
<td>$10,237,315</td>
<td>$4,094,760</td>
<td>$6,142,825</td>
<td>$0</td>
<td>$0</td>
<td>$10,237,315</td>
</tr>
<tr>
<td>Escalation</td>
<td>$1,046,423</td>
<td>$518,400</td>
<td>$1,046,423</td>
<td>$0</td>
<td>$0</td>
<td>$1,046,423</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$18,345,955</td>
<td>$17,973,805</td>
<td>$18,635,537</td>
<td>$0</td>
<td>$0</td>
<td>$18,635,537</td>
</tr>
</tbody>
</table>
Upon completion of the project-specific costs for each of the campus master plan priorities, a summary of the total costs associated with the Facilities Master Plan was generated. These costs can be analyzed from various vantage points to illustrate and compare the costs associated with each campus master plan and its impact on the total established District need. The following are the summaries of the total costs associated with the Manhattan Beach Unified School District Facilities Master Plan:

MBUSD Master Plan Implementation Projects – Summary

District-wide Summary

- **Total Districtwide Costs**: $319,504,407
- **% of total**: 3.69%
- **% mpip**: 26.70%
- **% total**: 14.17%
- **% nonsch**: 113.39%
- **% sch**: 1.67%
- **Total Immediate Needs Costs**: $30,475,130
 - **% total**: 10.00%
 - **% nonsch**: 8.83%
 - **% sch**: 10.00%
- **Total New Construction Costs**: $145,391,752
 - **% total**: 47.55%
 - **% nonsch**: 8.52%
 - **% sch**: 9.54%
- **Total Modernization Costs**: $113,719,952
 - **% total**: 35.47%
 - **% nonsch**: 5.07%
 - **% sch**: 3.65%
- **Total Reconfiguration Costs**: $18,240,804
 - **% total**: 5.63%
 - **% nonsch**: 1.67%
 - **% sch**: 10.00%
- **Total Demolition Costs**: $1,012,500
 - **% total**: 0.31%
 - **% nonsch**: 0.00%
 - **% sch**: 0.45%
- **Total Miscellaneous Costs**: $298,171,626
 - **% total**: 93.32%
 - **% nonsch**: 17.55%
 - **% sch**: 33.07%

MBUSD Nonschool Sites

- **Total MBUSD Master Plan Nonschool Site Costs**: $31,950,441
- **% total**: 0.45%
- **% nonsch**: 14.23%
- **% sch**: 0.34%

MBUSD Site Costs

- **Total MBUSD Master Plan Site Work Costs**: $2,811,689
- **% total**: 0.00%
- **% nonsch**: 8.61%
- **% sch**: 8.61%

District-wide Summary - Nonschool Sites

- **Total Nonschool Costs**: $19,772,915
 - **% total**: 3.65%
 - **% nonsch**: 93.32%
 - **% sch**: 0.00%

MBUSD Immediate Needs Costs

- **Total Immediate Needs Costs**: $9,906,501
 - **% total**: 0.61%
 - **% nonsch**: 0.00%
 - **% sch**: 9.59%

MBUSD M&O Facility Costs

- **Total M&O Facility Costs**: $2,076,754
 - **% total**: 0.00%
 - **% nonsch**: 0.00%
 - **% sch**: 0.45%

MBUSD Assessment Reserves Costs

- **Total Assessment Reserves Costs**: $3,921,589
 - **% total**: 0.00%
 - **% nonsch**: 0.00%
 - **% sch**: 0.00%

MBUSD Immediate Needs Costs by Site

- **Total Immediate Needs Costs by Site**: $2,029,807
 - **% total**: 0.00%

MBUSD Total Project Costs by Site

- **Total Project Costs by Site**: $150,000,000
 - **% total**: 0.00%

The Facility Condition Assessments identified the projected needs and costs associated with the various components of each campus’s buildings, equipment and grounds. These costs are extended over a 20 year period of time. The purpose of these assessments is to assist the District with planning for immediate facilities needs, as well as needs that are anticipated over the next twenty years. For example, items such as roof or HVAC repairs and replacement are based on the useful life expectancy of the installed products and the intervals at which time these items would need repairs and or replacement. The extent of the work is contingent upon the District’s project priorities (if a building at a specific campus is noted in the facilities assessment to need a roof replacement, but the master plan is calling for it to be demolished within a few years, the District would not replace the roof on that building at this time). Following is a district-wide summary of the Facility Condition Assessments.
Master Plan Funding Opportunities

With the identification of the project priorities associated with the Manhattan Beach Unified School District's Master Plan, the final step in the Finalization and Implementation process involved identifying all potential funding opportunities to assist the District with implementing the Master Plan. The sources of potential funding are then compared to the established costs associated with the District's Facilities Master Plan.

Introduction

The Manhattan Beach Unified School District has a history of success in obtaining facility funding from State and Federal funding programs, receiving approximately $14,905,665 since 1999. Given the District's current entitlement and the proposed $9 billion bond initiative for November 2016, the District is again poised to receive State funds to assist with its capital program needs.

This report estimates that the Manhattan Beach Unified School District may currently be eligible to apply for up to $3,258,675 in State modernization and new construction funding. Over the next ten years the district may be eligible to apply for an additional $7,424,315 in State modernization funding. This report gives a detailed summary of the District's overall State new construction and modernization eligibility entitlement and discusses potential State and Federal programs that may be of benefit to the District.

The eligibility analysis presented in this report is based on document previously submitted to the Office of Public School construction (OPSC) in addition to site maps and enrollment information provided by the District and DLR Group. The draft eligibility outlined in this report will require review and approval by OPSC and the State Allocation Board (SAB). If at any time additional information becomes available that changes the assumptions and calculations used in the analysis, the eligibility may change.

In order to access the identified funds, the District will be subject to various State legal and regulatory requirements, local financial match requirements, annual qualifications, submittal deadlines and State-wide bond elections and bond sales. To access the funds requires that the District spend local dollars as part of their match requirement ahead of submitting for State funding in order to complete the design and Division of the State Architect (DSA) and California Department of Education (CDE) approvals; both of which are prerequisites to request State matching dollars.

Local General Obligation Bond

History of Manhattan Beach Unified School District Bond Success

The Manhattan Beach Unified School District has received continuous support from the Manhattan Beach community since the District's unification in 1992. An important element of this community support has been the District's ability to clearly define their needs and deliver the promised results. The continued excellence the District provides to the students' success has strengthened the trust and respect between the community and the District.

In 1996 the Manhattan Beach voters approved Measure A for $47.3 million. This was done by a two-thirds approval requirement (Proposition 46). The proceeds from this bond were used to construct the Manhattan Beach Middle School which moved the 6th grade students from the elementary schools to form the middle school configuration. It was also used to modernize each of the elementary schools which qualified for State Facility Program matching funds.

In 2000 the voters approved Measure M (Proposition 39). These funds were used for much-needed upgrades to Mira Costa High School, including fire and life safety standards, repair and rehabilitation of existing education spaces and the construction of additional space to relieve overcrowded conditions at the school.

In 2008, the residents of Manhattan Beach approved Measure BB for $67.5 million (Proposition 39). These proceeds were slated for renovations, repairs and new teaching spaces at Mira Costa High School. The final elements of these improvements have just been completed earlier this year.

Proposition 39 and Proposition 46

The statute that governed all general obligation bonds prior to 2000 was Proposition 46, which required a two-thirds voter approval for passage. The School Facilities Local Vote Act of 2000 (Proposition 39) was passed by California voters on November 7, 2000. The primary impact of Proposition 39 was to reduce the threshold required to pass school district general obligation bond issues from a two-thirds super majority vote to a 55% majority vote. In addition to the change in minimum affirmation votes, Proposition 39 also added additional constraints including election dates, use of bond proceeds, oversight requirements and tax rate limitations. Since Proposition 39 was enacted, the majority of school district general obligation bonds have been passed under its provisions.

Manhattan Beach Unified School District Bond Issuance Capacity

As of 2014 the net bonding capacity is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan Beach 2014 Assessed Value</td>
<td>$13,961,831,222</td>
</tr>
<tr>
<td>Department of Education limit of AV (2.5%)</td>
<td>$349,045,781</td>
</tr>
<tr>
<td>Outstanding GO Bonds</td>
<td>$65,000,000</td>
</tr>
<tr>
<td>Net Bond Issuance Capacity</td>
<td>$284,045,780</td>
</tr>
</tbody>
</table>
School Program - New Construction and Modernization

2016 Bond Initiative

The Coalition for Adequate School Housing (CASH) submitted a $9 billion dollar Kindergarten through Community College bond initiative for placement on the November 2016 ballot. This initiative includes $3 billion for New Construction, $3 billion for Modernization, $500 million for Career Technical Education, $500 million for Charter and $2 billion for community Colleges. The initiative will go directly to the people of California and does not require approval from the Governor or Legislature.

As of this report, the Attorney General’s office has completed their review and prepared Title and Summary for the ballot. Signature gathering is currently in process, after approximately 367,000 signatures are verified, the initiative will be considered qualified and it will be placed on the November 2016 General Election ballot.

The following charts illustrate the proposed bond amounts for the new construction and modernization programs and the estimated dollar amount for projects already in house at the Office of Public School Construction.

Districts that have submitted projects to the OPSC prior to the proposed authority being exhausted will be eligible to have the projects reviewed by the OPSC and, if passed, funded from the proposed bond. Districts that do not have projects submitted prior to the proposed authority being exhausted will have to continue to wait for additional funding to become available through another future bond. Districts may submit Applications for Funding once project plans have received DSA and CDE approval.

Status of Available Bond Funds

As of May 27, 2015, the status of the School Facility Program (SFP) funds available by bond and program is as follows:

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Remaining Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposition 1D</td>
<td></td>
</tr>
<tr>
<td>New Construction</td>
<td>$4.0 million</td>
</tr>
<tr>
<td>Modernization</td>
<td>$4.4 million</td>
</tr>
<tr>
<td>Seismic Mitigation / Repair</td>
<td>$140.9 million</td>
</tr>
<tr>
<td>Career Technical Education</td>
<td>$3.6 million</td>
</tr>
<tr>
<td>High Performance Schools</td>
<td>$0.5 million</td>
</tr>
<tr>
<td>Overcrowding Relief Grant</td>
<td>$4.3 million</td>
</tr>
<tr>
<td>Charter School</td>
<td>$17.9 million</td>
</tr>
<tr>
<td>Joint Use</td>
<td>$0.0 million</td>
</tr>
<tr>
<td>Proposition 55</td>
<td>$7.8 million</td>
</tr>
<tr>
<td>Proposition 47</td>
<td>$1.5 million</td>
</tr>
<tr>
<td>Proposition 1A</td>
<td>$0.0 million</td>
</tr>
<tr>
<td>Total SFP Funding</td>
<td>$184.9 million</td>
</tr>
</tbody>
</table>

New Construction

The SFP New Construction program funding may be used to purchase and/or build new schools or classrooms for eligible K-12 students. Eligibility for this program is based on enrollment projections and seating capacity in the District. The District must provide an equal match to the State’s contribution to the projects.

This program has currently received applications in excess of available bonding authority. However, on February 24, 2015, this program received SAB approval for a regulatory amendment proposed by the 2014/15 State Budget Act, which calls for a portion of the remaining Career Technical Education Facilities Program (CTEFP) and the High Performance Incentive (HP) Grant program authority to be transferred to the New Construction program.

The table below outlines the District’s estimated 2014/15 new construction eligibility. Since new construction eligibility is only valid until October 31 of each year, it must be recalculated annually. The eligibility estimated included in this report will remain valid through October 2015.
The New Construction program requires a district to select one enrollment projection model from a list of approved methodologies. The following table utilizes the highest enrollment projection for the purpose of determining the District’s new construction eligibility.

The eligibility figures below do not include augmentations such as site acquisition and site development. The District may apply for this funding after receiving California Department of Education (CDE) and Division of the State Architect (DSA) approval of the project plans containing new classroom capacity.

2014/15 Draft New Construction Eligibility

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Eligibility</th>
<th>State Share</th>
<th>District Share</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-6</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>7-8</td>
<td>77</td>
<td>$842,534</td>
<td>$1,685,068</td>
<td>$2,527,592</td>
</tr>
<tr>
<td>9-12</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Non-Severe SDC</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Severe SDC</td>
<td>4</td>
<td>$116,280</td>
<td>$232,560</td>
<td>$348,840</td>
</tr>
<tr>
<td>Total</td>
<td>81</td>
<td>$958,814</td>
<td>$1,917,628</td>
<td>$2,876,442</td>
</tr>
</tbody>
</table>

Modernization

The SFP Modernization program funding may be used for the renovation and/or replacement of existing buildings. This funding may not be used to increase the capacity at a site. Modernization eligibility is site-specific and is generated by permanent buildings over 25 years of age and portable buildings over 20 years of age. The District must provide a match equal to 40% of the total State and local share.

Similar to New Construction, the Modernization program has currently received applications in excess of available bonding authority. However, on February 24, 2015, this program received SAB approval for a regulatory amendment proposed by the 2014/15 State Budget Act, which calls for a portion of the remaining CTEFP and the HPI Grant program authority to be transferred to the Modernization program.

Currently, the District has modernization eligibility totaling approximately $2,299,861 in base grant State funding that may be requested as soon as project plans receive DSA and CDE approval. The District would be required to provide a match of $1,533,241 to access this funding. The dollar amount does not include augmentations for which the District may be eligible. For example, schools with permanent facilities over fifty years old may qualify for additional augmentations for utility work. Please note, this modernization eligibility includes a drawdown for projects already approved by the SAB.

The following tables shows the District’s 2014/15 estimated modernization eligibility by site. Tab 2 shows the detailed modernization eligibility by site including the drawdown of previously funded projects.

2014/15 Modernization Eligibility

<table>
<thead>
<tr>
<th>School Site</th>
<th>Eligibility</th>
<th>State Share</th>
<th>District Share</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan Beach Preschool</td>
<td>6</td>
<td>$23,634</td>
<td>$15,756</td>
<td>$39,390</td>
</tr>
<tr>
<td>Pennekamp ES</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Grand View ES</td>
<td>73</td>
<td>$287,547</td>
<td>$191,698</td>
<td>$479,245</td>
</tr>
<tr>
<td>Meadows ES</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Robinson ES</td>
<td>375</td>
<td>$1,477,125</td>
<td>$984,750</td>
<td>$2,461,875</td>
</tr>
<tr>
<td>Pacific ES</td>
<td>7</td>
<td>$587,935</td>
<td>$39,195</td>
<td>$627,130</td>
</tr>
<tr>
<td>Manhattan Beach MS</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Mira Costa HS</td>
<td>83</td>
<td>$452,762</td>
<td>$301,841</td>
<td>$754,603</td>
</tr>
<tr>
<td>Total</td>
<td>471</td>
<td>$2,299,861</td>
<td>$1,533,241</td>
<td>$3,833,102</td>
</tr>
</tbody>
</table>

The modernization funding estimates shown above were calculated utilizing the 2015 grant amounts approved by the SAB on April 15, 2015. Note these estimates are subject to adjustments by the Office of Public School Construction and regulatory changes.

Ten Year Modernization Eligibility Analysis

Over time, the modernization eligibility at individual school sites changes as facilities age. This report examines the age of individual buildings on campuses and estimates the modernization eligibility over a ten year period. The analysis uses 2015 grant amounts and assumes no increase in enrollment over ten year projection period. If grant amounts increase, the potential funding will increase. If enrollment increases, modernization eligibility at some of the sites could increase. The total ten year modernization eligibility is $9,724,176. The District would be required to provide a match of $6,482,784 to access this funding.

Tab 3 shows the modernization eligibility changes that could occur as existing facilities age over the next ten years. The potential eligibility changes are shown on a year by year basis for each school in the district utilizing the 2015 modernization grant amounts for all years.

Tab 4 totals the changes from the table in Tab 3 and shows the cumulative modernization eligibility at individual school sites by year over the next ten years.
School Facility Program - Other Opportunities

Career Technical Education Facilities Program (CTEFP)
This CTEFP provided Local Education Agencies (LEA) operating a comprehensive high school, up to $3 million per project for new construction of Career Technical facilities and up to $1.5 million per project for the modernization of Career Technical facilities. Projects may have consisted of equipment only. Traditional SFP eligibility was not required and was adjusted for these projects. The CDE had to first approve the District’s Career Technical Education Plan and proposed project. Districts had to provide the anticipated costs and square footage to determine the amount of funding to be requested.

In February 2015, all remaining authority in this program was allocated to new construction and modernization projects.

Seismic Mitigation Program (SMP) Funding
Seismic Mitigation Program (SMP) Funding is available for facilities that are considered a qualifying Category 2 Building Type as defined in School Facility Program Regulation 1859.2 and designed for occupancy by students and staff. A Structural engineer’s report or geologic report identifying the building deficiencies and reasoning for concluding that the building has a potential for catastrophic collapse in a seismic event, including, but not limited to, ground shaking, liquefaction, landslide or other identified risks must be submitted. The district must obtain DSA or California Geological Survey concurrence.

SMP funding is available through the Facility Hardship program and buildings may be considered for either rehabilitation or replacement depending on the costs associated with the project. They may be submitted for conceptual approval and then for funding. These projects are reviewed separately by the OPSC and appear on the SAB agenda as special items.

As of May 27, 2015 there is $140.9 million in funding available for this program.

Facility Hardship
This program is designed to provide funding to repair or replace facilities that have either an imminent health or safety threat, or for facilities that have been lost due to a natural disaster like a flood, fire, or earthquake. This program requires extensive Government agency supported documentation and special approval from the SAB. The OPSC is currently accepting applications for facility hardship projects and processes them as bond authority becomes available.

New Construction Additional Grant for District-Owned Site Acquisition Cost (AB 401)
This program allows a district to apply for additional new construction funding if the district is vacating non-school space that has been productively used for at least the past five years, such as administration space, and is placing students into the vacated facility or onto the vacated land.

New construction Additional Grant for Replaced Facilities (AB 801)
This program provides additional funding for the replacement cost of single-story buildings that are demolished and replaced with multi-story buildings. In order to qualify for this funding, the project must increase capacity at the site by at least 20% or 200 pupils, whichever is greater, among other criteria.
Other Funding Programs

Proposition 39: California Clean Energy Jobs Act

The California Clean Energy Jobs Act was created with the approval of Proposition 39 in the November 6, 2012, Statewide General election. The statute made changes to the corporate income tax code and allocated the projected revenue to the Clean Energy Job Creation Fund (Job Creation Fund). The funding from the Job Creation Fund is used to fund energy efficiency and energy generation projects at Local education Agencies (LEAs) and community colleges. Beginning with the 2013/14 fiscal year and for the following four fiscal years, the funding will be available to be appropriated by the Legislature for eligible projects in accordance with the program guidelines. The California Energy Commission (CEC) adopted the current implementation guidelines on December 10, 2014.

The funding amount for each school district is calculated annually by the CDE and is based on the districts’ Average Daily Attendance (ADA). The CEC is currently accepting project applications. Districts will need to justify the use of funds on qualifying projects through the development of an Energy Expenditure Plan.

The Manhattan Beach Unified School District 2013/14 and 2014/15 entitlements total $501,736.

Safe Routes to Schools / Active Transportation Program (ATP)

On September 26, 2013 the Governor signed legislation creating the Active transportation Program. The previous Safe Routes to School program was incorporated into this larger program. The California Transportation Commission adopted the 2015 guidelines for ATP on March 26, 2015. The program’s second call for projects was opened on March 26, 2015 and closed on June 1, 2015.

School districts may apply directly for funds under the new ATP. The ATP is a reimbursement program. A project that is already fully funded will not be considered for ATP funding. Allocation of funds must be requested in the fiscal year for project programming. Projects requesting up to $1 million and that do not benefit a disadvantaged community shall include at least 10% in matching funds. All projects requesting $5 million or more shall include at least 20% in matching funds. Eligible projects will be selected through a competitive process and must meet one or more of the program goals: development of new bikeways and walkways that improve mobility, access, or safety for non-motorized users, improvements to existing bikeways and walkways, which improve mobility, access, or safety for non-motorized users, elimination of hazardous conditions on existing bikeways and walkways, preventative maintenance of bikeways and walkways with the primary goal of extending the service life of the facility, installation of traffic control devices to improve the safety of pedestrians and bicyclists, and projects that improve the safety of children walking and bicycling to school, in accordance with Section 1404 of Public Law 10-59: Safe Routes to Schools infrastructure projects must be located within two miles of a public school or public school bus stop.

Funding amount for the third application cycle has not yet been established.

Qualified Zone Academy Bonds (QZAB)

The QZAB Program provides interest-free school renovation bonds for sites that house educational programs that strive to improve and promote graduation rates and job skills in partnership with interested private entities. This program was allocated $50,069,000 in 2014; funding left from the 2013 allocation will expire at the end of this year and any funds remaining from the 2014 allocation will expire at the end of 2016. This program provides the bondholder with a federal tax credit in lieu of a cash interest payment. As the federal government is providing the interest payment, the district is typically only responsible for repaying the value of the bond.

There are three requirements a district must meet in order to qualify for the program. These are:

- At least 35% of the students attending the specified Academy school or program must be eligible for free or reduced-cost lunches established under the National Lunch Act, or the district must be located in an Empowerment Zone or Enterprise Community.
- The district must secure a written commitment for private entity contributions of at least 10% of the QZAB amount.
- The Academies must be district-operated and provide education and training for K-12 with the same academic standards and assessments as other students in the district.

The QZAB bond often allows districts to increase project size without necessarily increasing the project budget by relieving the interest payments in addition to providing the ability to utilize sinking funds as repayment.

As noted above, this program requires 35% of students attending the specified Academy school or program to be eligible for free and reduced lunch. Based on a review of the 2014/15 Free or Reduced Price Meal Data, the District does not appear to have any sites that meet the 35% threshold requirement.

This program has $57 million in available funding.

New Market Tax Credit (NMT)

The New Market Tax Credit program was authorized under the Community Renewal and Tax Relief Act of 2000 to spur new investment into projects that provide economic and social benefits to low-income communities.
This program finances approximately 20-25% of total project budget while providing a below-market rate financing.

Factors that are considered to qualify for the New Market Tax Credit program are:

• Whether the project serves a low-income population or is located in a low-income community. Attached is map highlighting the areas that could qualify for the program.
• Whether the project has strong community and economic benefits or provides critical public services.
• Other funding sources secured for the project.
• Level of need for NMTC financing of the project to attain economic feasibility.
• The project construction schedule for the next twelve months.

The District must create a non-profit organization that will own or lease the project, that non-profit then applies to the Community Development Entity for an allocation. If selected, the Community Development Entity sells a percentage of the NMTC to institutional investors who then take the tax credits over a seven year period. The Community Development Entity then “lends” the net amount to the non-profit with a one percent interest rate and loan forgiveness after seven years.

Pre-Disaster Mitigation (PDM)

PDM funds flow from FEMA to individual states and is administered in California by the California Emergency Management Agency (CalEMA). The program was created when the Disaster Mitigation Act of 2000 amended the Stafford Act to provide a funding mechanism that is not dependent on a presidential disaster declaration. PDM funding requires at least a 25% match (75% federal share of project cost).

Grants are available for the creation of Local Hazard Mitigation Plans (LHMPs) and for the implementation of mitigation projects prior to a disaster event. To apply for funding; applicants must complete a Notice of Interest (NOI) available on the CalEMA web site. Eligible applicants who submit an NOI for an eligible activity will be given the code to access the Federal eGrants system to complete an application.

School Districts and Local Educational Agencies (LEAs) with LHMPs or which are part of a multijurisdictional LHMP are eligible applicants. Please note, the Fiscal Year 2015 (FY15) Hazard Mitigation Assistance (HMA) application period opened on February 27, 2015 and closed on April 24, 2015. This program operates in an annual funding cycles based on the fiscal year.

Please note, funds are allocated when FEMA approves the application and they must be used within 18 months of FEMA approval.

Funding amount for the 2016 application period has not yet been established.

Drought Response Outreach Program (DROPS)

The DROPS program is a competitive grant program for projects designed to address the drought by capturing, treating, infiltrating or using storm water while providing multiple benefits, including water conservation, water supply augmentation, energy savings, increased awareness of water resource sustainability, and reduced dry weather run off. Each LEA may only submit one grant request and the project must be completed by the winter of 2018/19.

This program was allocated a total of $25.5 million with approximately $20.3 million being allocated to “Southern” California (However, $5 million of this amount is set aside for LAUSD). There is a 25% set-aside out of the total funding for Disadvantaged Schools. Funding and match requirements are based on District wide enrollment. Preference is given to Low Impact Development projects.

Proposals for this program were due January 15, 2015.

Qualified School Construction Bonds (QSCB)

QSCBs were authorized by the federal government through the American Recovery and Reinvestment Act (ARRA) of 2009. The bonds provided federal tax credits for bondholders in lieu of interest in order to significantly reduce an issuer’s cost of borrowing. The ARRA provided for an allocation to each state.

Federal School Renovation and Repair Program

Funding for the Federal School Renovation and Repair Program was appropriated by Congress in 1999. This program provided funding for emergency repair needs including health and safety projects, asbestos abatement and access compliance. On May 22, 2002, the SAB approved the Manhattan Beach Unified School District’s Application for Federal Grant in the amount of $201,980.

This program has not been reauthorized for additional funding opportunities.
2014/15 New Construction Eligibility Analysis - Tab 1

<table>
<thead>
<tr>
<th>New Construction Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-Severe</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>3,111</td>
<td>995</td>
<td>2,696</td>
<td>28</td>
<td>41</td>
<td>6,871</td>
</tr>
<tr>
<td>Baseline Capacity</td>
<td>(5,221)</td>
<td>(918)</td>
<td>(3,024)</td>
<td>(54)</td>
<td>(37)</td>
<td>(9,254)</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>State Share</td>
<td>$0</td>
<td>$842,534</td>
<td>$0</td>
<td>$0</td>
<td>$116,280</td>
<td>$958,814</td>
</tr>
<tr>
<td>District Share</td>
<td>$0</td>
<td>$842,534</td>
<td>$0</td>
<td>$0</td>
<td>$116,280</td>
<td>$958,814</td>
</tr>
<tr>
<td>Grant Eligibility Value</td>
<td>$0</td>
<td>$1,685,068</td>
<td>$0</td>
<td>$0</td>
<td>$232,560</td>
<td>$1,917,628</td>
</tr>
</tbody>
</table>

5-Year Projection

<table>
<thead>
<tr>
<th>New Construction Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-Severe</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>3,027</td>
<td>995</td>
<td>2,696</td>
<td>28</td>
<td>41</td>
<td>6,871</td>
</tr>
<tr>
<td>Baseline Capacity</td>
<td>(5,221)</td>
<td>(918)</td>
<td>(3,024)</td>
<td>(54)</td>
<td>(37)</td>
<td>(9,254)</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>State Share</td>
<td>$0</td>
<td>$842,534</td>
<td>$0</td>
<td>$0</td>
<td>$116,280</td>
<td>$958,814</td>
</tr>
<tr>
<td>District Share</td>
<td>$0</td>
<td>$842,534</td>
<td>$0</td>
<td>$0</td>
<td>$116,280</td>
<td>$958,814</td>
</tr>
<tr>
<td>Grant Eligibility Value</td>
<td>$0</td>
<td>$1,685,068</td>
<td>$0</td>
<td>$0</td>
<td>$232,560</td>
<td>$1,917,628</td>
</tr>
</tbody>
</table>

5-Year Projection with County Birth Rate

<table>
<thead>
<tr>
<th>New Construction Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-Severe</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>2,942</td>
<td>995</td>
<td>2,696</td>
<td>28</td>
<td>41</td>
<td>6,871</td>
</tr>
<tr>
<td>Baseline Capacity</td>
<td>(5,221)</td>
<td>(918)</td>
<td>(3,024)</td>
<td>(54)</td>
<td>(37)</td>
<td>(9,254)</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>77</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>State Share</td>
<td>$0</td>
<td>$842,534</td>
<td>$0</td>
<td>$0</td>
<td>$87,210</td>
<td>$929,744</td>
</tr>
<tr>
<td>District Share</td>
<td>$0</td>
<td>$842,534</td>
<td>$0</td>
<td>$0</td>
<td>$87,210</td>
<td>$929,744</td>
</tr>
<tr>
<td>Grant Eligibility Value</td>
<td>$0</td>
<td>$1,685,068</td>
<td>$0</td>
<td>$0</td>
<td>$2,461,875</td>
<td>$1,744,420</td>
</tr>
</tbody>
</table>

5-Year Projection with Zip Code Birth Rate

<table>
<thead>
<tr>
<th>New Construction Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-Severe</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>2,835</td>
<td>908</td>
<td>2,605</td>
<td>26</td>
<td>38</td>
<td>6,871</td>
</tr>
<tr>
<td>Baseline Capacity</td>
<td>(5,221)</td>
<td>(918)</td>
<td>(3,024)</td>
<td>(54)</td>
<td>(37)</td>
<td>(9,254)</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>State Share</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$29,070</td>
<td>$29,070</td>
</tr>
<tr>
<td>District Share</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$29,070</td>
<td>$29,070</td>
</tr>
<tr>
<td>Grant Eligibility Value</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$58,140</td>
<td>$58,140</td>
</tr>
</tbody>
</table>

10-Year Projection

<table>
<thead>
<tr>
<th>New Construction Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-Severe</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>2,835</td>
<td>908</td>
<td>2,605</td>
<td>26</td>
<td>38</td>
<td>6,871</td>
</tr>
<tr>
<td>Baseline Capacity</td>
<td>(5,221)</td>
<td>(918)</td>
<td>(3,024)</td>
<td>(54)</td>
<td>(37)</td>
<td>(9,254)</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>State Share</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$29,070</td>
<td>$29,070</td>
</tr>
<tr>
<td>District Share</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$29,070</td>
<td>$29,070</td>
</tr>
<tr>
<td>Grant Eligibility Value</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$58,140</td>
<td>$58,140</td>
</tr>
</tbody>
</table>

2014/15 Modernization Eligibility Analysis by Site - Tab 2

Manhattan Beach Preschool

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$23,634</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$23,634</td>
<td></td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$15,756</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$15,756</td>
<td></td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$39,390</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$39,390</td>
<td></td>
</tr>
</tbody>
</table>

Pennekamp Elementary School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>

Grand View Elementary School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>598</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>598</td>
<td></td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>525</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>78</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$287,547</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$287,547</td>
<td></td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$191,698</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$191,698</td>
<td></td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$479,245</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$479,245</td>
<td></td>
</tr>
</tbody>
</table>

Meadows Elementary School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>
2015 MANHATTAN BEACH UNIFIED SCHOOL DISTRICT FACILITIES MASTER PLAN

IMPLEMENTATION

Robinson Elementary School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>375</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>375</td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>375</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>375</td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$1,477,125</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$1,477,125</td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$984,750</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$984,750</td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$2,461,875</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$2,461,875</td>
</tr>
</tbody>
</table>

Pacific Elementary School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>631</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>654</td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>660</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$58,793</td>
<td>$0</td>
<td>$58,793</td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$39,195</td>
<td>$0</td>
<td>$39,195</td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$97,988</td>
<td>$0</td>
<td>$97,988</td>
</tr>
</tbody>
</table>

Manhattan Beach Middle School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Project (no Projects Filed)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Mira Costa High School

<table>
<thead>
<tr>
<th>Modernization Eligibility</th>
<th>K-6</th>
<th>7-8</th>
<th>9-12</th>
<th>Non-SDC</th>
<th>S-SDC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/15 Enrollment Projection</td>
<td>0</td>
<td>0</td>
<td>2,507</td>
<td>0</td>
<td>0</td>
<td>2,507</td>
</tr>
<tr>
<td>Project (57/03)</td>
<td>0</td>
<td>0</td>
<td>2,141</td>
<td>0</td>
<td>0</td>
<td>2,141</td>
</tr>
<tr>
<td>Project (57/06)</td>
<td>0</td>
<td>0</td>
<td>283</td>
<td>26</td>
<td>0</td>
<td>309</td>
</tr>
<tr>
<td>Remaining Eligibility</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>Estimated State Funding (60%)</td>
<td>$0</td>
<td>$0</td>
<td>$452,762</td>
<td>$0</td>
<td>$0</td>
<td>$452,762</td>
</tr>
<tr>
<td>Estimated District Match (40%)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$301,841</td>
<td>$0</td>
<td>$301,841</td>
</tr>
<tr>
<td>Total Estimated Funding (100%)</td>
<td>$0</td>
<td>$0</td>
<td>$754,603</td>
<td>$0</td>
<td>$0</td>
<td>$754,603</td>
</tr>
</tbody>
</table>

Summary of Successful Funding by Program (1999-2015)

State and Federal Funding Programs

<table>
<thead>
<tr>
<th>Remaining Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Allocation Board: Modernization (School Facility Program)</td>
</tr>
<tr>
<td>Total (State Share)</td>
</tr>
</tbody>
</table>

Proposition 39: California Energy Jobs Act

<table>
<thead>
<tr>
<th>Year</th>
<th>Award Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013/14</td>
<td>$262,841</td>
</tr>
<tr>
<td>2014/15</td>
<td>$238,895</td>
</tr>
<tr>
<td>Total</td>
<td>$501,736</td>
</tr>
</tbody>
</table>

Federal Funding Program

| Total |
Federal School Renovation and Repair Program	$201,980
Federal Funding Program Total	$201,980
Funding Summary Total	$14,905,665

School Facility Program Modernization Projects

<table>
<thead>
<tr>
<th>School Site</th>
<th>Project Number</th>
<th>Funding Date</th>
<th>State Date</th>
<th>Funding Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meadows Elementary School</td>
<td>57/75333-00-001</td>
<td>5/13/1999</td>
<td>$1,134,216</td>
<td></td>
</tr>
<tr>
<td>Penninkamp Elementary School</td>
<td>57/75333-00-002</td>
<td>8/3/2000</td>
<td>$946,800</td>
<td></td>
</tr>
<tr>
<td>Mira Costa High School</td>
<td>57/75333-00-003</td>
<td>1/10/2003</td>
<td>$7,733,605</td>
<td></td>
</tr>
<tr>
<td>Grand View Elementary School</td>
<td>57/75333-00-004</td>
<td>5/16/2005</td>
<td>$1,440,090</td>
<td></td>
</tr>
<tr>
<td>Pacific Elementary School</td>
<td>57/75333-00-005</td>
<td>1/10/2003</td>
<td>$1,725,929</td>
<td></td>
</tr>
<tr>
<td>Mira Costa High School</td>
<td>57/75333-00-006</td>
<td>5/16/2005</td>
<td>$1,221,309</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$14,201,949</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of the Implementation Strategy

Throughout the process of developing the Facilities Master Plan with the Manhattan Beach Unified School District, it has been important to identify a reasonable approach for implementing this endeavor. With the emerging awareness of how educational facilities enhance Next Generation learning, and the implementation of Common Core State Standards, one could easily assume that older, existing campuses may be a challenge or a barrier to these goals. However, after extensive review of the existing campuses and working with the Core Planning Group, an approach has been developed that works equally as well within existing campus buildings as it does with new facilities.

Potential funding opportunities were weighed against the identified priorities of the District to ensure that the Facilities Master Planning team had set realistic goals with equally realistic funding sources to implement them. The final costs estimated to implement and complete the Facilities Master Plan were supported in full by the Core Planning Group. This is an ambitious and meticulous plan to ensure that the Manhattan Beach Unified School District continues to provide the superior education to the students of their community for generations to come.

It was the goal of this Facilities Master Plan and the intention of the District to develop a Plan that would illustrate the needs of each campus for the next 10 years or more with the identified means to achieve these goals. All projects outlined in this document are anticipated to be implemented. The work associated with improvements to Polliwog Park will be implemented if a matching funding source can be identified and secured prior to its development.

With that being said, the State of California requires local school districts to fund the majority of their facility needs. Once local funding has been secured, the ability for the District to secure possible State funding will continue to be monitored and explored. This Facilities Master Plan is an outline of the needs and expectations of the Manhattan Beach Unified School District and the community they support. It will change and evolve over its useful life to further clarify the needs and constraints that each site may encounter. The implementation and order of the project priorities is intended to remain flexible to allow the Manhattan Beach Unified School District to benefit from potential matching funding sources as they become available.

As we conclude, let’s take a walk out on the Manhattan Beach pier. Imagine on one side of the pier are the needs and expectations of the Manhattan Beach Unified School District and the community and on the other side of the pier are the potential means and funding sources identified to fulfill these goals. Both sides of the pier must be in balance for them to reach the same destination at the Roadhouse Marine Study Lab and Aquarium. The importance of this balance is ensuring the success of this planning process. The farther we walk from the shore, the more clearly the vision and dreams for future lifelong learners becomes reality.
listen.DESIGN.deliver